期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Carbide precipitation and microstructure refinement of Cr-Co-Mo-Ni bearing steel during hot deformation 被引量:5
1
作者 袁晓虹 郑善举 +1 位作者 杨卯生 赵昆渝 《Journal of Central South University》 SCIE EI CAS CSCD 2015年第9期3265-3274,共10页
The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1... The dynamic recrystallization and carbides precipitation of the Cr-Co-Mo-Ni bearing steel were investigated by hot compression tests performed at temperatures ranging from 850 ℃to 1080 ℃ with strain rate of 1-20 s-1. The activation energy(Q) for the tested steel is calculated to be around 682.99 k J/mol at a deformation strain of 0.6. Microstructural analysis by SEM shows that the dynamic recrystallization(DRX) behavior is dependent sensitively on the deformation strain, temperature and strain rate, while an exponential relationship between DRX grain size and Z parameter is obtained from the computational formula. Moreover, the M6C-type carbides(〈1 μm) act as the main prohibitor of grain coarsening, and the polynomial regression relationship between them is worked out. With electron backscatter diffraction(EBSD) observation, DRX is the main nucleation mechanism responsible for the formation of new grains during hot compression. In conclusion, the interaction between DRX affected by hot deformation parameters and carbides precipitation determines the ultimate grain size refinement. 展开更多
关键词 high-alloy steel Z parameter grain size refinement carbides dynamic recrystallization (DRX) mechanism
下载PDF
Effect of B_4C on Oxidation Resistance of Low-Carbon MgO-C Materials 被引量:1
2
作者 HE Zhiyong PENG Xiaoyan LIU Kaiqi LI Lin 《China's Refractories》 CAS 2007年第4期21-23,共3页
B4C was added into the low-carbon MgO-C materials in order to improve the oxidation resistance. The results show adding 0. 3wt% B4C can get the best oxidation resistance and adding 0. 2 wt% B4C can get the highest hot... B4C was added into the low-carbon MgO-C materials in order to improve the oxidation resistance. The results show adding 0. 3wt% B4C can get the best oxidation resistance and adding 0. 2 wt% B4C can get the highest hot modulus of rupture. Altogether, adding 0. 2wt% B,C into the low-carbon MgO-C materials can get better oxidation resistance and hot strength. 展开更多
关键词 B4C Low-carbon MGO-C Oxidation resistance Hot modulus of rupture
下载PDF
Multi-phase structure and electrical properties of Bi_(0.5)Li_(0.5)ZrO_3 doping K_(0.48)Na_(0.56)NbO_3 lead-free piezoelectric ceramics 被引量:5
3
作者 Xiaoyan PENG Boping ZHANG +4 位作者 Lifeng ZHU Lei ZHAO Ruixiao MA Bo LIU Xiaodong WANG 《Journal of Advanced Ceramics》 SCIE CSCD 2018年第1期79-87,共9页
(1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3(KNN–x BLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric pr... (1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3(KNN–x BLZ, x = 0–0.06) lead-free piezoelectric ceramics were prepared by the conventional solid-state sintering method, and their phase structures and electric properties as well as T_C were systematically investigated. The orthorhombic–tetragonal(O–T) two phases were detected in all(1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3 ceramics at 0.01 ≤ x ≤ 0.05. Due to the appropriate ratio between O phase and T phase(CO/C T= 45/55), high piezoelectric properties of d 33= 239 pC/N, k_p= 34%, and P_r = 25.23 μC/cm^2 were obtained at x = 0.04. Moreover, a high T_C = 348 ℃ was also achieved in KNN–x BLZ ceramic at x = 0.04. These results indicate that (1–x)K_(0.48)Na_(0.56)NbO_3–xBi_(0.5)Li_(0.5)ZrO_3 system is a promising candidate for high-temperature piezoelectric devices. 展开更多
关键词 lead-free piezoelectric ceramics potassium–sodium niobate (KNN) solid-state sintering MULTI-PHASE electrical properties
原文传递
Model Algorithm Research on Cooling Path Control of Hot-rolled Dual-phase Steel 被引量:1
4
作者 Xiao-qing XU Xiao-dong HAO +2 位作者 Shi-guang ZHOU Chang-sheng LIU Qi-fu ZHANG 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2016年第10期1028-1034,共7页
With the development of advanced high strength steel,especially for dual-phase steel,the model algorithm for cooling control after hot rolling has to achieve the targeted coiling temperature control at the location of... With the development of advanced high strength steel,especially for dual-phase steel,the model algorithm for cooling control after hot rolling has to achieve the targeted coiling temperature control at the location of downcoiler whilst maintaining the cooling path control based on strip microstructure along the whole cooling section.A cooling path control algorithm was proposed for the laminar cooling process as a solution to practical difficulties associated with the realization of the thermal cycle during cooling process.The heat conduction equation coupled with the carbon diffusion equation with moving boundary was employed in order to simulate temperature change and phase transformation kinetics,making it possible to observe the temperature field and the phase fraction of the strip in real time.On this basis,an optimization method was utilized for valve settings to ensure the minimum deviations between the predicted and actual cooling path of the strip,taking into account the constraints of the cooling equipment′s specific capacity,cooling line length,etc.Results showed that the model algorithm was able to achieve the online cooling path control for dual-phase steel. 展开更多
关键词 dual-phase steel laminar cooling phase transformation integrated process model cooling path control
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部