Center porosity and centerline segregation in continuously cast bloom can be minimized by the well-known method of dynamic soft reduction. Metallurgical results of soft reduction previously employed in continuous bloo...Center porosity and centerline segregation in continuously cast bloom can be minimized by the well-known method of dynamic soft reduction. Metallurgical results of soft reduction previously employed in continuous bloom casting for heavy rail steel in Panzhihua Iron and Steel Group were not fully achieved because of the improper soft reduction process. Therefore, experiments for optimizing the process parameters of soft reduction for bloom were carried out. The results show that the proportion of the center porosity, which is less than 1.0, increases from 28.41% to 99.81%, while the proportion of the centerline segregation class increases from 40.91% to 100%, and the proportion of the central cavity increases from 92.05% to 100%, whereas the center carbon segregation index decreases from 1.17 to 1.05. The internal quality and the mechanical performance of the rails produced from continuously cast blooms meet the requirement of high-speed tracks of 350 km/h.展开更多
The existing problems in the manufacture of SWRH82B high carbon steel wire were discussed by sampling and testing the microstructure and properties of the steel from the workshop. To solve the problems, the experiment...The existing problems in the manufacture of SWRH82B high carbon steel wire were discussed by sampling and testing the microstructure and properties of the steel from the workshop. To solve the problems, the experimental parameters for thermal simulation were optimized, and the thermal simulating experiments were carded out on a Gleeblel500 thermal simulator. The process parameters for the manufacture were optimized after analysis of the data, and the productive experiments were performed after the water box in front of the no-twist blocks was reconstructed, to control the temperature of the loop layer. The results from the productive experiments showed that the cooling rate of 10-15℃/s was reasonable before phase transformation, about 5℃/s during phase transformation, and 600-620℃ was the suitable starting temperature for phase transformation. The ultimate strength of the Ф11.0 mm wire was increased to 1150-1170 MPa with an increase of 20-30 MPa, the percentage reduction of section was to 34%-36% with an increase of 1%-3% by testing the finished products after reconstruction.展开更多
文摘Center porosity and centerline segregation in continuously cast bloom can be minimized by the well-known method of dynamic soft reduction. Metallurgical results of soft reduction previously employed in continuous bloom casting for heavy rail steel in Panzhihua Iron and Steel Group were not fully achieved because of the improper soft reduction process. Therefore, experiments for optimizing the process parameters of soft reduction for bloom were carried out. The results show that the proportion of the center porosity, which is less than 1.0, increases from 28.41% to 99.81%, while the proportion of the centerline segregation class increases from 40.91% to 100%, and the proportion of the central cavity increases from 92.05% to 100%, whereas the center carbon segregation index decreases from 1.17 to 1.05. The internal quality and the mechanical performance of the rails produced from continuously cast blooms meet the requirement of high-speed tracks of 350 km/h.
文摘The existing problems in the manufacture of SWRH82B high carbon steel wire were discussed by sampling and testing the microstructure and properties of the steel from the workshop. To solve the problems, the experimental parameters for thermal simulation were optimized, and the thermal simulating experiments were carded out on a Gleeblel500 thermal simulator. The process parameters for the manufacture were optimized after analysis of the data, and the productive experiments were performed after the water box in front of the no-twist blocks was reconstructed, to control the temperature of the loop layer. The results from the productive experiments showed that the cooling rate of 10-15℃/s was reasonable before phase transformation, about 5℃/s during phase transformation, and 600-620℃ was the suitable starting temperature for phase transformation. The ultimate strength of the Ф11.0 mm wire was increased to 1150-1170 MPa with an increase of 20-30 MPa, the percentage reduction of section was to 34%-36% with an increase of 1%-3% by testing the finished products after reconstruction.