Multihop cellular networks is an exciting and a fledgling area of wireless communication which offers huge potential in terms of coverage enhancement, data-rates, power reduction, and various other quality of service ...Multihop cellular networks is an exciting and a fledgling area of wireless communication which offers huge potential in terms of coverage enhancement, data-rates, power reduction, and various other quality of service improvements. However, resource allocation in MCN is an NP-hard problem. Hence, significant research needs to be done in this field in order to efficiently design the radio network. In this paper, optimal position of relay stations in a hierarchical cluster-based two-hop cellular network is investigated. Vector algebra has been used to derive general equation for carrier-to-interference ratio (C/I) of a mobile station. It has been observed that when the transmit power of base station (BS) and the gateway (GTW)/relay station (RS) are same, the RSs should be located close to mid-point of BS and the edge of the cell. However, significantly, when the transmit power of the BS is greater than that of the GTW, then the RSs should be placed closer to the edge of the cell, in order to maximize the minimum C/I at any point in the cell. This in turn results in higher modulation technique at the physical layer, and hence, a higher data-rate to all the users in the system.展开更多
文摘Multihop cellular networks is an exciting and a fledgling area of wireless communication which offers huge potential in terms of coverage enhancement, data-rates, power reduction, and various other quality of service improvements. However, resource allocation in MCN is an NP-hard problem. Hence, significant research needs to be done in this field in order to efficiently design the radio network. In this paper, optimal position of relay stations in a hierarchical cluster-based two-hop cellular network is investigated. Vector algebra has been used to derive general equation for carrier-to-interference ratio (C/I) of a mobile station. It has been observed that when the transmit power of base station (BS) and the gateway (GTW)/relay station (RS) are same, the RSs should be located close to mid-point of BS and the edge of the cell. However, significantly, when the transmit power of the BS is greater than that of the GTW, then the RSs should be placed closer to the edge of the cell, in order to maximize the minimum C/I at any point in the cell. This in turn results in higher modulation technique at the physical layer, and hence, a higher data-rate to all the users in the system.