期刊文献+
共找到159篇文章
< 1 2 8 >
每页显示 20 50 100
外加物理场调控二维材料的HER和OER性能 被引量:2
1
作者 秦春玲 陈爽 +8 位作者 Hassanien Gomaa Mohamed A.Shenashen Sherif A.El-Safty 刘倩 安翠华 刘熙俊 邓齐波 胡宁 《物理化学学报》 SCIE CAS CSCD 北大核心 2024年第9期28-34,共7页
长期以来,氢燃料一直被认为是一种有前途和可行的传统化石燃料的替代品,可以支撑我们未来的能源格局。电催化水分解是一种可用于大规模高效生产高纯度氢气的可持续和环保的技术。该技术的工业化需要我们不断地提高两个电极上的析氢反应(... 长期以来,氢燃料一直被认为是一种有前途和可行的传统化石燃料的替代品,可以支撑我们未来的能源格局。电催化水分解是一种可用于大规模高效生产高纯度氢气的可持续和环保的技术。该技术的工业化需要我们不断地提高两个电极上的析氢反应(HER)和析氧反应(OER)的反应动力学。此外,催化剂催化活性和结构稳定性的持续优化对于该技术的实际实施同样关键。因此,合适的催化剂的选取是影响电催化水分解的关键因素之一。二维(2D)纳米材料由于其独特的物理化学性质和丰富的活性位点成为了电解水领域的热点。此外,2D材料独特的物理化学特性能与外加物理场之间高度契合,可以产生一些独特的效果来增强电催化性能。因此,近些年,外加物理场在辅助改善HER和OER方面的作用和机制越来越受到关注。外加物理场,如电场,磁场,应变,光,温度和超声波,可以应用于催化剂合成和电催化过程。本文首先总结了物理场辅助电解水催化剂合成的研究。随后,根据外场在电催化过程中作用机制的不同,对外场辅助HER和OER的研究进行了分类。最后,本文指出了本领域快速发展所面临的主要挑战和前景。 展开更多
关键词 外加物理场 析氢反应 析氧反应 合成 二维材料
下载PDF
Effects of Initial and Boundary Conditions on Heavy Rainfall Simulation over the Yellow Sea and the Korean Peninsula:Comparison of ECMWF and NCEP Analysis Data Effects and Verification with Dropsonde Observation
2
作者 Jiwon HWANG Dong-Hyun CHA +2 位作者 Donghyuck YOON Tae-Young GOO Sueng-Pil JUNG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2024年第9期1787-1803,共17页
This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula... This study evaluated the simulation performance of mesoscale convective system(MCS)-induced precipitation,focusing on three selected cases that originated from the Yellow Sea and propagated toward the Korean Peninsula.The evaluation was conducted for the European Centre for Medium-Range Weather Forecasts(ECMWF)and National Centers for Environmental Prediction(NCEP)analysis data,as well as the simulation result using them as initial and lateral boundary conditions for the Weather Research and Forecasting model.Particularly,temperature and humidity profiles from 3D dropsonde observations from the National Center for Meteorological Science of the Korea Meteorological Administration served as validation data.Results showed that the ECMWF analysis consistently had smaller errors compared to the NCEP analysis,which exhibited a cold and dry bias in the lower levels below 850 hPa.The model,in terms of the precipitation simulations,particularly for high-intensity precipitation over the Yellow Sea,demonstrated higher accuracy when applying ECMWF analysis data as the initial condition.This advantage also positively influenced the simulation of rainfall events on the Korean Peninsula by reasonably inducing convective-favorable thermodynamic features(i.e.,warm and humid lower-level atmosphere)over the Yellow Sea.In conclusion,this study provides specific information about two global analysis datasets and their impacts on MCS-induced heavy rainfall simulation by employing dropsonde observation data.Furthermore,it suggests the need to enhance the initial field for MCS-induced heavy rainfall simulation and the applicability of assimilating dropsonde data for this purpose in the future. 展开更多
关键词 initial conditions dropsonde heavy rainfall forecast global model analysis evaluation
下载PDF
Two-Dimensional Metallophthalocyanine Nanomaterials for Electrocatalytic Energy Conversion
3
作者 Xinqi Wang Shaohui Sun +3 位作者 Jiahao Yao Hao Wan Renzhi Ma Wei Ma 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第4期364-385,共22页
Growing energy demand drives the rapid development of clean and reliable energy sources.In the past years,the exploration of novel materials with considerable efficiency and durability has drawn attention in the area ... Growing energy demand drives the rapid development of clean and reliable energy sources.In the past years,the exploration of novel materials with considerable efficiency and durability has drawn attention in the area of electrochemical energy conversion.Transition metal macrocyclic metallophthalocyanines(MPcs)-based catalysts with a peculiar 2D constitution have emerged with a promising future account of their highly structural tailorability and molecular functionality which greatly extend their functionalities as electrocatalytic materials for energy conversion.This review summarizes the systematic engineering of synthesis of MPcs and their analogs in detail,and mostly pays attention to the frontier research of MPc-based high-performance catalysts toward different electrocatalytic processes concerning hydrogen,oxygen,water,carbon dioxide,and nitrogen,with a particular focus on discussing the interrelationship between the electrocatalytic activity and component/structure,as well as functional applications of MPcs.Finally,we give the gaps that need to be addressed after much thought. 展开更多
关键词 conjugated nanostructure ELECTROCATALYSIS 2D metallophthalocyanines
下载PDF
A review on ultra-small undoped MoS_(2) as advanced catalysts for renewable fuel production
4
作者 Guoping Liu Lingling Ding +6 位作者 Yuxuan Meng Ahmad Ali Guifu Zuo Xianguang Meng Kun Chang Oi Lun Li Jinhua Ye 《Carbon Energy》 SCIE EI CAS CSCD 2024年第2期92-112,共21页
Molybdenum disulfide(MoS_(2))has garnered significant attention in the field of catalysis due to the high density of active sites in its unique two-dimensional(2D)structure,which could be developed into numerous high-... Molybdenum disulfide(MoS_(2))has garnered significant attention in the field of catalysis due to the high density of active sites in its unique two-dimensional(2D)structure,which could be developed into numerous high-performance catalysts.The synthesis of ultra-small MoS2 particles(<10 nm)is highly desired in various experimental studies.The ultra-small structure could often lead to a distinct S-Mo coordination state and nonstoichiometric composition in MoSx,minimizing in-plane active sites of the 2D structure and making it probable to regulate the atomic and electronic structure of its intrinsic active sites on a large extent,especially in MoSx clusters.This article summarizes the recent progress of catalysis over ultra-small undoped MoS_(2) particles for renewable fuel production.Through a systematic review of their synthesis,structural,and spectral characteristics,as well as the relationship between their catalytic performance and inherent defects,we aim to provide insights into catalysis over this matrix that may potentially enable advancement in the development of high-performance MoS_(2)-based catalysts for sustainable energy generation in the future. 展开更多
关键词 applications CATALYTIC MoS_(2) structure synthesis
下载PDF
Superconducting joints using reacted multifilament MgB_(2)wires:A technology toward cryogen-free MRI magnets
5
作者 Dipak Patel Akiyoshi Matsumoto +8 位作者 Hiroaki Kumakura Yuka Hara Toru Hara Minoru Maeda Hao Liang Yusuke Yamauchi Seyong Choi Jung Ho Kim Md Shahriar A.Hossain 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第1期159-170,共12页
The development of superconducting joining technology for reacted magnesium diboride(MgB_(2))conductors remains a critical challenge for the advancement of cryogen-free MgB_(2)-based magnets for magnetic resonance ima... The development of superconducting joining technology for reacted magnesium diboride(MgB_(2))conductors remains a critical challenge for the advancement of cryogen-free MgB_(2)-based magnets for magnetic resonance imaging(MRI).Herein,the fabrication of superconducting joints using reacted carbon-doped multifilament MgB_(2)wires for MRI magnets is reported.To achieve successful superconducting joints,the powder-in-mold method was employed,which involved tuning the filament protection mechanism,the powder compaction pressure,and the heat treatment condition.The fabricated joints demonstrated clear superconducting-to-normal transitions in self-field,with effective magnetic field screening up to 0.5 T at 20 K.To evaluate the interface between one of the MgB_(2)filaments and the MgB_(2)bulk within the joint,serial sectioning was conducted for the first time in this type of superconducting joint.The serial sectioning revealed space formation at the interface,potentially caused by the volume shrinkage associated with the MgB_(2)formation or the combined effect of the volume shrinkage and the different thermal expansion coefficients of the MgB_(2)bulk,the filament,the mold,and the sealing material.These findings are expected to be pivotal in developing MgB_(2)superconducting joining technology for MRI magnet applications through interface engineering. 展开更多
关键词 Mg B2 superconducting joint MgB_(2)conductor MRI applications Cryogen-free magnet Persistent-mode operation
下载PDF
Magnesium alloys as alternative anode materials for rechargeable magnesium-ion batteries:Review on the alloying phase and reaction mechanisms
6
作者 Dedy Setiawan Hyeonjun Lee +6 位作者 Jangwook Pyun Amey Nimkar Netanel Shpigel Daniel Sharon Seung-Tae Hong Doron Aurbach Munseok S.Chae 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第9期3476-3490,共15页
Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electro... Magnesium-ion batteries(MIBs)are promising candidates for lithium-ion batteries because of their abundance,non-toxicity,and favorable electrochemical properties.This review explores the reaction mechanisms and electrochemical characteristics of Mg-alloy anode materials.While Mg metal anodes provide high volumetric capacity and dendrite-free electrodeposition,their practical application is hindered by challenges such as sluggish Mg^(2+)ion diffusion and electrolyte compatibility.Alloy-type anodes that incorporate groups XIII,XIV,and XV elements have the potential to overcome these limitations.We review various Mg alloys,emphasizing their alloying/dealloying reaction mechanisms,their theoretical capacities,and the practical aspects of MIBs.Furthermore,we discuss the influence of the electrolyte composition on the reversibility and efficiency of these alloy anodes.Emphasis is placed on overcoming current limitations through innovative materials and structural engineering.This review concludes with perspectives on future research directions aimed at enhancing the performance and commercial viability of Mg alloy anodes and contributing to the development of high-capacity,safe,and cost-effective energy storage systems. 展开更多
关键词 Magnesium-ion battery Anode materials Magnesium alloy Electrochemical alloying
下载PDF
Is platinum-loaded titania the best material for dye-sensitized hydrogen evolution under visible light?
7
作者 Haruka Yamamoto Langqiu Xiao +5 位作者 Yugo Miseki Hiroto Ueki Megumi Okazaki Kazuhiro Sayama Thomas E.Mallouk Kazuhiko Maeda 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第8期124-132,共9页
A dye-sensitized photocatalyst combining Pt-loaded TiO_(2) and Ru(Ⅱ)tris-diimine sensitizer(RuP)was constructed and its activity for photochemical hydrogen evolution was compared with that of Pt-intercalated HCa_(2)N... A dye-sensitized photocatalyst combining Pt-loaded TiO_(2) and Ru(Ⅱ)tris-diimine sensitizer(RuP)was constructed and its activity for photochemical hydrogen evolution was compared with that of Pt-intercalated HCa_(2)Nb_(3)O_(10) nanosheets.When the sacrificial donor ethylenediaminetetraacetic acid(EDTA)disodium salt dihydrate was used,RuP/Pt/TiO_(2) showed higher activity than RuP/Pt/HCa_(2)Nb_(3)O_(10).In contrast,when NaI(a reversible electron donor)was used,RuP/Pt/TiO_(2) showed little activity due to back electron transfer to the electron acceptor(I_(3)-),which was gener-ated as the oxidation product of I-.By modification with anionic polymers(sodium poly(styrenesulfonate)or sodium polymethacrylate)that could inhibit the scavenging of conduction band electrons by I_(3)-,the H_(2) production activity from aqueous NaI was improved,but it did not exceed that of RuP/Pt/HCa_(2)Nb_(3)O_(10).Transient absorption measurements showed that the rate of semiconductor-to-dye back electron transfer was slower in the case of TiO_(2) than HCa_(2)Nb_(3)O_(10),but the electron transfer reaction to I3-was much faster.These results indicate that Pt/TiO_(2) is useful for reactions with sacrificial reductants(e.g.,EDTA),where the back electron transfer reaction to the more reducible product can be neglected.However,more careful design of the catalyst will be nec-essary when a reversible electron donor is employed. 展开更多
关键词 Artificial photosynthesis Solar fuel Water splitting Z-scheme
下载PDF
Boron Nitride-Integrated Lithium Batteries:Exploring Innovations in Longevity and Performance
8
作者 Shayan Angizi Sayed Ali Ahmad Alem +3 位作者 Mahdi Torabian Maryam Khalaj Dmitri Golberg Amir Pakdel 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期13-40,共28页
The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of... The current global warming,coupled with the growing demand for energy in our daily lives,necessitates the development of more efficient and reliable energy storage devices.Lithium batteries(LBs)are at the forefront of emerging power sources addressing these challenges.Recent studies have shown that integrating hexagonal boron nitride(h-BN)nanomaterials into LBs enhances the safety,longevity,and electrochemical performance of all LB components,including electrodes,electrolytes,and separators,thereby suggesting their potential value in advancing eco-friendly energy solutions.This review provides an overview of the most recent applications of h-BN nanomaterials in LBs.It begins with an informative introduction to h-BN nanomaterials and their relevant properties in the context of LB applications.Subsequently,it addresses the challenges posed by h-BN and discusses existing strategies to overcome these limitations,offering valuable insights into the potential of BN nanomaterials.The review then proceeds to outline the functions of h-BN in LB components,emphasizing the molecular-level mechanisms responsible for performance improvements.Finally,the review concludes by presenting the current challenges and prospects of integrating h-BN nanomaterials into battery research. 展开更多
关键词 ELECTRODE ELECTROLYTE hexagonal boron nitride lithium battery SEPARATOR
下载PDF
Selection of Fe as a barrier for manufacturing low-cost MgB2 multifilament wires-Advanced microscopy study between Fe and B reaction
9
作者 Hao Liang Dipak Patel +7 位作者 Ziming Wang Akiyoshi Matsumoto Matt Rindfleisch Micheal Tomsic Richard Taylor Fang Liu Yusuke Yamauchi Md.Shahriar A Hossain 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第7期2783-2792,共10页
The high cost of using the niobium(Nb)barrier for manufacturing magnesium diboride(MgB2)mono-and multi-filamentary wires for large-scale applications has become one of the barriers to replacing current commercial niob... The high cost of using the niobium(Nb)barrier for manufacturing magnesium diboride(MgB2)mono-and multi-filamentary wires for large-scale applications has become one of the barriers to replacing current commercial niobium-titanium superconductors.The potential of replacing the Nb barrier with a low-cost iron(Fe)barrier for multifilament MgB2 superconducting wires is investigated in this manuscript.Therefore,MgB2 wires with Fe barrier sintered with different temperatures are studied(from 650°C to 900°C for 1 h)to investigate the non-superconducting reaction phase of Fe-B.Their superconducting performance including engineering critical current density(Je)and n-value are tested at 4.2 K in various external magnetic fields.The best sample sintered at 650°C for 1 h has achieved a Je value of 3.64×10^(4) A cm^(−2) and an n-value of 61 in 2 T magnetic field due to the reduced formation of Fe2B,better grain connectivity and homogenous microstructure.For microstructural analysis,the focused ion beam(FIB)is utilised for the first time to acquire three-dimensional microstructures and elemental mappings of the interface between the Fe barrier and MgB2 core of different wires.The results have shown that if the sintering temperature can be controlled properly,the Je and n-value of the wire are still acceptable for magnet applications.The formation of Fe2B is identified along the edge of MgB2,as the temperature increases,the content of Fe2B also increases which causes the degradation in the performance of wires. 展开更多
关键词 Superconducting wires MGB2 MRI magnet Engineering critical current density Fe2B
下载PDF
Harvesting Energy Via Water Movement and Surface Ionics in Microfibrous Ceramic Wools
10
作者 Manpreet Kaur Avinash Alagumalai +3 位作者 Omid Mahian Sameh M.Osman Tadaaki Nagao Zhonglin Wang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期332-341,共10页
Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,... Due to the push for carbon neutrality in various human activities,the development of methods for producing electricity without relying on chemical reaction processes or heat sources has become highly significant.Also,the challenge lies in achieving microwatt-scale outputs due to the inherent conductivity of the materials and diverting electric currents.To address this challenge,our research has concentrated on utilizing nonconductive mediums for water-based low-cost microfibrous ceramic wools in conjunction with a NaCl aqueous solution for power generation.The main source of electricity originates from the directed movement of water molecules and surface ions through densely packed microfibrous ceramic wools due to the effect of dynamic electric double layer.This occurrence bears resemblance to the natural water transpiration in plants,thereby presenting a fresh and straightforward approach for producing electricity in an ecofriendly manner.The generator module demonstrated in this study,measuring 12×6 cm^(2),exhibited a noteworthy open-circuit voltage of 0.35 V,coupled with a short-circuit current of 0.51 mA.Such low-cost ceramic wools are suitable for ubiquitous,permanent energy sources and hold potential for use as self-powered sensors and systems,eliminating the requirement for external energy sources such as sunlight or heat. 展开更多
关键词 ceramic microfibers energy harvesting power generation self-powered systems water evaporation
下载PDF
Lithium Ion Transport Environment by Molecular Vibrations in Ion-Conducting Glasses
11
作者 Hiroki Yamada Koji Ohara +20 位作者 Satoshi Hiroi Atsushi Sakuda Kazutaka lkeda Takahiro Ohkubo Kengo Nakada Hirofumi Tsukasaki Hiroshi Nakajimai Laszlo Temleitner Laszlo Pusztai Shunsuke Ariga Aoto Matsuo Jiong Ding Takumi Nakano Takuya Kimura Ryo Kobayashi Takeshi Usuki Shuta Tahara Koji Amezawa Yoshitaka Tateyama Shigeo Mori Akitoshi Hayashi 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期133-142,共10页
Controlling Li ion transport in glasses at atomic and molecular levels is key to realizing all-solid-state batteries,a promising technology for electric vehicles.In this context,Li_(3)PS_(4)glass,a promising solid ele... Controlling Li ion transport in glasses at atomic and molecular levels is key to realizing all-solid-state batteries,a promising technology for electric vehicles.In this context,Li_(3)PS_(4)glass,a promising solid electrolyte candidate,exhibits dynamic coupling between the Li^(+)cation mobility and the PS_(4)^(3-)anion libration,which is commonly referred to as the paddlewheel effect.In addition,it exhibits a concerted cation diffusion effect(i.e.,a cation-cation interaction),which is regarded as the essence of high Li ion transport.However,the correlation between the Li^(+)ions within the glass structure can only be vaguely determined,due to the limited experimental information that can be obtained.Here,this study reports that the Li ions present in glasses can be classified by evaluating their valence oscillations via Bader analysis to topologically analyze the chemical bonds.It is found that three types of Li ions are present in Li_(3)PS_(4)glass,and that the more mobile Li ions(i.e.,the Li3-type ions)exhibit a characteristic correlation at relatively long distances of 4.0-5.0A.Furthermore,reverse Monte Carlo simulations combined with deep learning potentials that reproduce X-ray,neutron,and electron diffraction pair distribution functions showed an increase in the number of Li3-type ions for partially crystallized glass structures with improved Li ion transport properties.Our results show order within the disorder of the Li ion distribution in the glass by a topological analysis of their valences.Thus,considering the molecular vibrations in the glass during the evaluation of the Li ion valences is expected to lead to the development of new solid electrolytes. 展开更多
关键词 electrolytes ionic conductors MODELING molecular dynamics
下载PDF
Additive manufacturing of promising heterostructure for biomedical applications 被引量:5
12
作者 Cijun Shuai Desheng Li +2 位作者 Xiong Yao Xia Li Chengde Gao 《International Journal of Extreme Manufacturing》 SCIE EI CAS CSCD 2023年第3期363-405,共43页
As a new generation of materials/structures,heterostructure is characterized by heterogeneous zones with dramatically different mechanical,physical or chemical properties.This endows heterostructure with unique interf... As a new generation of materials/structures,heterostructure is characterized by heterogeneous zones with dramatically different mechanical,physical or chemical properties.This endows heterostructure with unique interfaces,robust architectures,and synergistic effects,making it a promising option as advanced biomaterials for the highly variable anatomy and complex functionalities of individual patients.However,the main challenges of developing heterostructure lie in the control of crystal/phase evolution and the distribution/fraction of components and structures.In recent years,additive manufacturing techniques have attracted increasing attention in developing heterostructure due to the unique flexibility in tailored structures and synthetic multimaterials.This review focuses on the additive manufacturing of heterostructure for biomedical applications.The structural features and functional mechanisms of heterostructure are summarized.The typical material systems of heterostructure,mainly including metals,polymers,ceramics,and their composites,are presented.And the resulting synergistic effects on multiple properties are also systematically discussed in terms of mechanical,biocompatible,biodegradable,antibacterial,biosensitive and magnetostrictive properties.Next,this work outlines the research progress of additive manufacturing employed in developing heterostructure from the aspects of advantages,processes,properties,and applications.This review also highlights the prospective utilization of heterostructure in biomedical fields,with particular attention to bioscaffolds,vasculatures,biosensors and biodetections.Finally,future research directions and breakthroughs of heterostructure are prospected with focus on their more prospective applications in infection prevention and drug delivery. 展开更多
关键词 additive manufacturing HETEROSTRUCTURE synergistic effects integrated properties biomedical applications
下载PDF
Strengths,weaknesses,opportunities,and threats(SWOT)analysis of supercapacitors:A review 被引量:3
13
作者 Pragati A.Shinde Qaisar Abbas +3 位作者 Nilesh R.Chodankar Katsuhiko Ariga Mohammad Ali Abdelkareem Abdul Ghani Olabi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期611-638,共28页
The development of clean and sustainable energy sources has received widespread interest in the past few decades due to the rolling energy demands while extenuating the rising tiers of greenhouse gases and environment... The development of clean and sustainable energy sources has received widespread interest in the past few decades due to the rolling energy demands while extenuating the rising tiers of greenhouse gases and environmental pollution.Due to their intermittent nature,these green and sustainable sources require appropriate energy storage systems.Amongst different energy storage technologies,electrochemical energy storage devices,particularly supercapacitors(SCs),have fascinated global attention for their utilization in electric vehicles,power supports,portable electronics,and many others application requiring electric energy devices for their operation.Thus,the growth of SCs in the commercial market has squeezed requirements,and further developments are obligatory for their effective industrialization.In the meantime,SCs also face technical complications and contests for their introduction in industrial settings because of their low energy density and high Levelized cost.The present study combines core strengths,weaknesses,opportunities,and threats(SWOT)analysis of SCs with new perspectives and recent ideas.The challenges and the future progressive prospects of SCs are also presented in detail.This review will afford consistent direction and new superhighways for the further development of SCs as standalone and complementary energy storage systems. 展开更多
关键词 SUPERCAPACITORS Energy storage Strengths OPPORTUNITIES
下载PDF
Tuned d-band states over lanthanum doped nickel oxide for efficient oxygen evolution reaction 被引量:1
14
作者 Ziyi Xiao Wei Zhou +7 位作者 Baopeng Yang Chengan Liao Qing Kang Gen Chen Min Liu Xiaohe Liu Renzhi Ma Ning Zhang 《Nano Materials Science》 EI CAS CSCD 2023年第2期228-236,共9页
The d-band state of materials is an important descriptor for activity of oxygen evolution reaction(OER).For NiO materials,there is rarely concern about tuning their d-band states to tailor the OER behaviors.Herein,NiO... The d-band state of materials is an important descriptor for activity of oxygen evolution reaction(OER).For NiO materials,there is rarely concern about tuning their d-band states to tailor the OER behaviors.Herein,NiO nanocrystals with doping small amount of La^(3+)were used to regulate d-band states for promoting OER activity.Density of states calculations based on density functional theory revealed that La^(3+)doping produced upper shift of d-band center,which would induce stronger electronic interaction between surface Ni atoms and species of oxygen evolution reaction intermediates.Further density functional theory calculation illustrated that La^(3+)doped NiO possessed reduced Gibbs free energy in adsorbing species of OER intermediate.Predicted by theoretical calculations,trace La^(3+)was introduced into crystal lattice of NiO nanoparticles.The La^(3+)doped NiO nanocrystal showed much promoted OER activity than corresponding pristine NiO product.Further electrochemical analysis revealed that La^(3+)doping into NiO increased the intrinsic activity such as improved active sites and reduced charge transfer resistance.The in-situ Raman spectra suggested that NiO phase in La^(3+)doped NiO could be better maintained than pristine NiO during the OER.This work provides an effective strategy to tune the d-band center of NiO for efficient electrocatalytic OER. 展开更多
关键词 Nickel oxide Oxygen evolution reaction D-band center ELECTROCATALYSIS Water splitting
下载PDF
Selectivity control of photocatalytic CO_(2) reduction over ZnS-based nanocrystals:A comparison study on the role of ionic cocatalysts
15
作者 Hong Pang Fumihiko Ichihara +4 位作者 Xianguang Meng Lijuan Li Yuqi Xiao Wei Zhou Jinhua Ye 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第11期391-398,I0009,共9页
Taking copper doped ZnS(ZnS:Cu)nanocrystals as the main body of photocatalyst,the influence of different base transition metal ions(M^(2+)=Ni^(2+),Co^(2+),Fe^(2+)and Cd^(2+))on photocatalytic CO_(2)reduction in inorga... Taking copper doped ZnS(ZnS:Cu)nanocrystals as the main body of photocatalyst,the influence of different base transition metal ions(M^(2+)=Ni^(2+),Co^(2+),Fe^(2+)and Cd^(2+))on photocatalytic CO_(2)reduction in inorganic reaction system is investigated.Confined single-atom Ni^(2+),Co^(2+),and Cd^(2+)sites were created via cation-exchange process and enhanced CO_(2)reduction,while Fe^(2+)suppressed the photocatalytic activity for both water and CO_(2)reduction.The modified ZnS:Cu photocatalysts(M/ZnS:Cu)demonstrated tunable product selectivity,with Ni^(2+)and Co^(2+)showing high selectivity for syngas production and Cd^(2+)displaying remarkable formate selectivity.DFT calculations indicated favorable H adsorption free energy on Ni^(2+)and Co^(2+)sites,promoting the hydrogen evolution reaction.The selectivity of CO_(2)reduction products was found to be sensitive to the initial intermediate adsorption states.*COOH formed on Ni^(2+)and Co^(2+)while*OCHO formed on Cd^(2+),favoring the production of CO and HCOOH as the main products,respectively.This work provides valuable insights for developing efficient solar-to-fuel platforms with controlled CO_(2)reduction selectivity. 展开更多
关键词 CO_(2) reduction Photocatalysis Zns Ionic cocatalyst FORMATE Syngas DFT calculations
下载PDF
Engineering d-band states of(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)material for photocatalytic syngas production
16
作者 Peng Liu Baopeng Yang +7 位作者 Ziyi Xiao Shengyao Wang Shimiao Wu Min Liu Gen Chen Xiaohe Liu Renzhi Ma Ning Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期365-372,共8页
The d-band states of catalytic materials participate in adsorbing reactive intermediate species and determine the catalytic behaviors in CO_(2)reduction reactions.However,surface d-band states relating to the photocat... The d-band states of catalytic materials participate in adsorbing reactive intermediate species and determine the catalytic behaviors in CO_(2)reduction reactions.However,surface d-band states relating to the photocatalytic CO_(2)reduction reactions behaviors are rarely concerned.Herein,a slightly amount of Cd^(2+)is decorated on the surface of(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)material(Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4))to tune the surface d-band states for improved CO_(2)+2reduction reactions.The Cd/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)is fabricated via the facile ions-exchange method to make that slightly Zn2+is substituted by Cd^(2+).The Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)exhibits much enhanced photocatalytic activity in CO_(2)reduction reactions to produce CO and water splitting to produce H_(2).Physical characterizations show that the energy band structure is not changed obviously.Density functional theory reveals that Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)possesses a closer shift of d-band center to Fermi level than(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4),suggesting easier adsorption of CO_(2)reduction reactive intermediates after Cd^(2+)decoration.Further calculations confirm that a relatively reduced adsorption Gibbs energy of reactive intermediates in CO_(2)reduction reaction is required on Zn atoms in Cd^(2+)/(CuGa)_(x)Zn_(1-2x)Ga_(2)S_(4)material,benefiting the photocatalytic CO_(2)reduction reactions.This work engineers surface d-band states by surface Cd^(2+)decoration,which gives an effective strategy to design highly efficient photocatalysts for syngas production. 展开更多
关键词 Photocatalysisd-band state Density functional theory Sulfide semiconductor Surface modification
下载PDF
Cobalt phthalocyanine-based conjugated polymer as efficient and exclusive electrocatalyst for CO_(2) reduction to ethanol
17
作者 Dong Jiang Ran Bu +6 位作者 Wei Xia Yichen Hu Mengchen Zhou Enqing Gao Toru Asahi Yusuke Yamauchi Jing Tang 《Materials Reports(Energy)》 2023年第1期100-106,I0004,共8页
Electrocatalytic conversion of carbon dioxide to high value-added chemicals is a promising method for solving the energy crisis and global warming.Electrochemical active metal-containing conjugated polymers have been ... Electrocatalytic conversion of carbon dioxide to high value-added chemicals is a promising method for solving the energy crisis and global warming.Electrochemical active metal-containing conjugated polymers have been widely studied for heterogeneous carbon dioxide reduction.In the present contribution,we designed and synthesized a stable cobalt phthalocyanine-based conjugated polymer,named CoPPc-TFPPy-CP,and also explored its electro-catalytic application in carbon dioxide reduction to liquid products in an aqueous solution.In the catalyst,cobalt phthalocyanine acts as building blocks connected with 1,3,6,8-tetrakis(4-formyl phenyl)pyrenes via imine-linkages,leading to mesoporous formation polymers with the pore size centered at 4.1nm.And the central co-balt atoms shifted to a higher oxidation state after condensation.With these chemical and structural natures,the catalyst displayed a remarkable electrocatalytic CO_(2) reduction performance with an ethanol Faradaic efficiency of 43.25%at-1.0V vs RHE.While at the same time,the electrochemical reduction process catalyzed by cobalt phthalocyanine produced only carbon monoxide and hydrogen.To the best of our knowledge,CoPPc-TFPPy-CP is the first example among organic polymers and metal-organic frameworks that produces ethanol from CO_(2) with a remarkable selectivity. 展开更多
关键词 Cobalt phthalocyanine based conjugated polymer Carbon dioxide electroreduction Liquid products ETHANOL
下载PDF
铝-金刚石界面电子特性与界面肖特基势垒的杂化密度泛函理论HSE06的研究 被引量:5
18
作者 吴孔平 孙昌旭 +7 位作者 马文飞 王杰 魏巍 蔡俊 陈昌兆 任斌 桑立雯 廖梅勇 《物理学报》 SCIE EI CAS CSCD 北大核心 2017年第8期316-322,共7页
宽带隙半导体金刚石具有突出的电学与热学特性,近年来,基于金刚石的高频大功率器件受到广泛关注,对于金属-金刚石肖特基结而言,具有较高的击穿电压和较小的串联电阻,所以金属-金刚石这种金半结具有非常好的发展前景.本文通过第一性原理... 宽带隙半导体金刚石具有突出的电学与热学特性,近年来,基于金刚石的高频大功率器件受到广泛关注,对于金属-金刚石肖特基结而言,具有较高的击穿电压和较小的串联电阻,所以金属-金刚石这种金半结具有非常好的发展前景.本文通过第一性原理方法去研究金属铝-金刚石界面电子特性与肖特基势垒的高度.界面附近原子轨道的投影态密度的计算表明:金属诱导带隙态会在金刚石一侧产生,并且具有典型的局域化特征,同时可以发现电子电荷转移使得Fermi能级在金刚石一侧有所提升.电子电荷在界面的重新分布促使界面形成新的化学键,使得金属铝-氢化金刚石形成稳定的金半结.特别地,我们通过计算平均静电势的方法得到金属铝-氢化金刚石界面的势垒高度为1.03 eV,该值与金属诱导带隙态唯像模型计算的结果非常接近,也与实验值符合得很好.本文的研究可为金属-金刚石肖特基结二极管的研究奠定理论基础,也可为金刚石基金半结大功率器件的研究提供理论参考. 展开更多
关键词 铝-金刚石界面 界面电子态 肖特基势垒 静电势平均
下载PDF
硅表面直接生长十八烷基硅烷小分子自组装单层抗蚀剂的亚稳态氦原子光刻技术 被引量:1
19
作者 王中平 张增明 +3 位作者 仓桥光纪 铃木拓 丁泽军 山内泰 《电子显微学报》 CAS CSCD 北大核心 2010年第2期123-128,共6页
选取不同尺寸和形状的物理掩模,以硅表面直接生长的十八烷基硅烷小分子自组装单分子层作为抗蚀剂,硅(100)为衬底,亚稳态氦原子作为曝光源,利用湿法化学刻蚀方法在衬底上制备具有纳米尺寸分辨率的硅结构图形。基于扫描电子显微镜、原子... 选取不同尺寸和形状的物理掩模,以硅表面直接生长的十八烷基硅烷小分子自组装单分子层作为抗蚀剂,硅(100)为衬底,亚稳态氦原子作为曝光源,利用湿法化学刻蚀方法在衬底上制备具有纳米尺寸分辨率的硅结构图形。基于扫描电子显微镜、原子力显微镜的表征结果表明:原子光刻技术可以把具有纳米尺度分辨率的正负图形通过化学湿法刻蚀技术很好地传递到硅片衬底上,特征边缘分辨率达到20nm左右,具有较高的可信度和可重复性。正负图形相互转化的临界曝光原子剂量约为5×1014atomscm-2,曝光时间约为20min。 展开更多
关键词 原子光刻 掩模 自组装单分子层
下载PDF
镍基单晶高温合金热机疲劳断裂特征 被引量:1
20
作者 崔建军 张建新 原田广史 《材料科学与工艺》 EI CAS CSCD 北大核心 2012年第2期39-44,共6页
为了进一步提高镍基单晶高温合金的热机疲劳性能,通过微观结构解析研究了合金热机疲劳断裂特征.通过金相和扫描电子显微镜研究了热机疲劳断裂的断口特征和微观结构.研究表明:裂纹起源于形变孪晶与试样外表面的交截处,过程中的氧化有助... 为了进一步提高镍基单晶高温合金的热机疲劳性能,通过微观结构解析研究了合金热机疲劳断裂特征.通过金相和扫描电子显微镜研究了热机疲劳断裂的断口特征和微观结构.研究表明:裂纹起源于形变孪晶与试样外表面的交截处,过程中的氧化有助于裂纹的长大;裂纹尖端的应力场诱发出大量形变孪晶,而形变孪晶的存在为裂纹进一步沿着孪晶界扩展提供了便利条件;镍基单晶高温合金的疲劳断裂主要是由于形变孪晶的形成以及裂纹沿孪晶界的扩展造成的.形变孪晶与高温合金疲劳断裂密切相关. 展开更多
关键词 高温合金 疲劳 断裂 孪晶
下载PDF
上一页 1 2 8 下一页 到第
使用帮助 返回顶部