In order to interpret pathologic mechanism of free radicals and thyroid hormone metabolism in cattle iodine and selenium deficiency, 20 heads of yellow cattle were selected from NiuJia town, Wu Chang City, Heilongjian...In order to interpret pathologic mechanism of free radicals and thyroid hormone metabolism in cattle iodine and selenium deficiency, 20 heads of yellow cattle were selected from NiuJia town, Wu Chang City, Heilongjiang Province, China, and were randomly devided into 4 groups with 5 for each. ① supplemented with 0.7 mg·kg -1 iodine(potassium iodine), ② supplemented with 0.2 mg·kg -1 selenium (sodium selenite), ③ supplemented with 0.7 mg·kg -1 iodine(potassium Iodine) plus 0.2 mg·kg -1 selenium (sodium selenite) per day for 30 days, respectively. ④control group. The whole blood glutathione peroxidase (GSH-px) and catalase (CAT) activities, free radicals (FR) concentration, erythrocyte superoxide dismutase (SOD) activity and molonaldehyde (MDA) concentration, the serum triiodothyronine (T 3)、thyroxine (T 4) and thyrotropin (TSH) were determined on the day of supplementation day-0 and day-30, respectively. It was showed that average iodine concentration in drinking water and diet were 3.82 μg·L -1 and 0.285mg·kg -1 , respectively, Diet selenium was 0.0498mg·kg -1 , Serum protein bound iodine(PBI) was 7.02 μg·100 mL, Blood selenium was 0.14 mg·L -1 , the schoolchildren′s goiter was 21.8%. It indicated that iodine and selenium were deficient in the investigated area. Whole blood GSH-px and CAT activities and serum T 3 concentration were significantly higher (P< 0.01 ), FR concentration and serum TSH were significantly lower(P<0.01) in the first three groups than that of the control, T 4 content in the first group was higher(P<0.05), T 4 was also higher (P>0.05) in the second group. and lower in the third group. The SOD and MDA in erythrocyte were not changed during the experimental period, The results also showed that GSH-px and CAT activities were increased, and FR decreased oberviously in the third group more than the other two groups, In addition, Thyroid hormone metabolism was more coincided with the physiologic status in the third group. the iodine and the selenium played an important role in the pathologic process of free radical metabolic disorder. selenium not only had the function of antioxidation by derectly scavenging free radicals, but also affected through GSH-px and CAT activities. iodine deficiency results in the Goiter, selenium deficiency aggravated iodine deficiency, Iodine and the selenium were dependent and restrained each other in the course of free radicals and thyroid hormone metabolism with a synergistic state.展开更多
文摘In order to interpret pathologic mechanism of free radicals and thyroid hormone metabolism in cattle iodine and selenium deficiency, 20 heads of yellow cattle were selected from NiuJia town, Wu Chang City, Heilongjiang Province, China, and were randomly devided into 4 groups with 5 for each. ① supplemented with 0.7 mg·kg -1 iodine(potassium iodine), ② supplemented with 0.2 mg·kg -1 selenium (sodium selenite), ③ supplemented with 0.7 mg·kg -1 iodine(potassium Iodine) plus 0.2 mg·kg -1 selenium (sodium selenite) per day for 30 days, respectively. ④control group. The whole blood glutathione peroxidase (GSH-px) and catalase (CAT) activities, free radicals (FR) concentration, erythrocyte superoxide dismutase (SOD) activity and molonaldehyde (MDA) concentration, the serum triiodothyronine (T 3)、thyroxine (T 4) and thyrotropin (TSH) were determined on the day of supplementation day-0 and day-30, respectively. It was showed that average iodine concentration in drinking water and diet were 3.82 μg·L -1 and 0.285mg·kg -1 , respectively, Diet selenium was 0.0498mg·kg -1 , Serum protein bound iodine(PBI) was 7.02 μg·100 mL, Blood selenium was 0.14 mg·L -1 , the schoolchildren′s goiter was 21.8%. It indicated that iodine and selenium were deficient in the investigated area. Whole blood GSH-px and CAT activities and serum T 3 concentration were significantly higher (P< 0.01 ), FR concentration and serum TSH were significantly lower(P<0.01) in the first three groups than that of the control, T 4 content in the first group was higher(P<0.05), T 4 was also higher (P>0.05) in the second group. and lower in the third group. The SOD and MDA in erythrocyte were not changed during the experimental period, The results also showed that GSH-px and CAT activities were increased, and FR decreased oberviously in the third group more than the other two groups, In addition, Thyroid hormone metabolism was more coincided with the physiologic status in the third group. the iodine and the selenium played an important role in the pathologic process of free radical metabolic disorder. selenium not only had the function of antioxidation by derectly scavenging free radicals, but also affected through GSH-px and CAT activities. iodine deficiency results in the Goiter, selenium deficiency aggravated iodine deficiency, Iodine and the selenium were dependent and restrained each other in the course of free radicals and thyroid hormone metabolism with a synergistic state.