期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Recent advances in catalytic conversion of carbon dioxide to propiolic acids over coinage-metal-based catalysts
1
作者 Tianyu Zhang Jiawei Zhong Zhilian Wu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第8期572-580,I0012,共10页
The conversion of inexpensive,available C1 feedstock of carbon dioxide(CO_(2))into value-added fine chemicals via homogeneous or heterogeneous catalysis has attracted great recent interest.Coinagemetal-based(Cu,Ag,and... The conversion of inexpensive,available C1 feedstock of carbon dioxide(CO_(2))into value-added fine chemicals via homogeneous or heterogeneous catalysis has attracted great recent interest.Coinagemetal-based(Cu,Ag,and Au)catalysis has emerged as a synthetic strategy for a wide range of organic chemical reactions in past decades.In coinage-metal-catalyzed carboxylation,CO_(2)is adopted as a carboxylation reagent,while coinage-metal salts,complexes,and nanoparticles(NPs)serve as a Lewis acid catalyst to activate unsaturated chemicals,particularly alkynes.This mini-review focuses on the recent advances of coinage-metal-catalyzed carboxylation of terminal alkynes with CO_(2).Other respects,such as the role of bases,the influence of trace water,and solvent effects are also highlighted. 展开更多
关键词 Carbon dioxide Terminal alkynes Propiolic acids CATALYSIS
下载PDF
Balancing the anionic framework polarity for enhanced thermoelectric performance in YbMg_(2)Sb_(2) Zintl compounds 被引量:4
2
作者 Zongwei Zhang Xinyu Wang +14 位作者 Yijie Liu Chen Chen Honghao Yao Li Yin Xiaofang Li Shan Li Fan Zhang Fengxian Bai Jiehe Sui Bo Yu Feng Cao Xingjun Liu Jun Mao Guoqiang Xie Qian Zhang 《Journal of Materiomics》 SCIE EI 2019年第4期583-589,共7页
1-2-2-type Zintl phase compound has aroused great interest for potential thermoelectric applications.However,YbMg_(2)Sb_(2) is seldom studied due to the very low electrical conductivity resulting from the large differ... 1-2-2-type Zintl phase compound has aroused great interest for potential thermoelectric applications.However,YbMg_(2)Sb_(2) is seldom studied due to the very low electrical conductivity resulting from the large difference in the electronegativity between Mg and Sb.In this paper,we adjust the covalently bonded network of MgeSb by replacing part of the Mg with Zn which has the electronegativity closer to that of Sb.The decreased polarity in the anionic framework offers more free distance for electrons for the enhanced Hall mobility and electrical conductivity.Together with the increased point defect and the decreased lattice thermal conductivity by introduction of Zn,the maximum ZT value of ~0.8 at 773 K is achieved in YbMg_(0.9)Zn_(1.1)Sb_(2) which is~100% enhancement compared with that of YbMg_(2)Sb_(2). 展开更多
关键词 THERMOELECTRIC Zintl phase YbMg_(2)Sb_(2) Polarity ELECTRONEGATIVITY
原文传递
Recent advances of two-dimensional CoFe layered-double-hydroxides for electrocatalytic water oxidation 被引量:2
3
作者 Yi Zhou Jialai Hu +1 位作者 Lichun Yang Qingsheng Gao 《Chinese Chemical Letters》 SCIE CAS CSCD 2022年第6期2845-2855,共11页
Oxygen evolution reaction(OER)is pivotal to drive green hydrogen generation from water electrolysis,but yet is strictly overshadowed by the sluggish reaction kinetics.Earth-abundant and cut-price transitionmetal compo... Oxygen evolution reaction(OER)is pivotal to drive green hydrogen generation from water electrolysis,but yet is strictly overshadowed by the sluggish reaction kinetics.Earth-abundant and cut-price transitionmetal compounds,particularly Co Fe layered-double-hydroxides(LDHs),show the distinct superiorities in contrast to noble metals and their derivatives.In this review,we firstly underline their fundamental issues in electrocatalytic water oxidation,including Co Fe LDHs crystal structure,the surface of(hydr)oxides confined to OER and the controversial roles of Fe species,aiming at understanding the structure-related activity and catalytic mechanism.Advanced approaches for optimizing OER activity of Co Fe LDHs are then comprehensively overviewed,which will shed light on the different working mechanisms and provide a concise analysis of their unique advantages.Finally,a perspective on the future development of Co Fe LDHs electrocatalysts is offered.We hope this review can give a concise and explicit guidance for the development of transition-metal-based electrocatalysts in the energy field. 展开更多
关键词 CoFe layered-double-hydroxides Electrocatalytic water oxidation Two-dimensional nanostructures Surface reconstruction d-band
原文传递
Iontronic pressure sensor with high sensitivity and linear response over a wide pressure range based on soft micropillared electrodes 被引量:12
4
作者 Peng Lu Liu Wang +11 位作者 Pang Zhu Jun Huang Yueji Wang Ningning Bai Yan Wang Gang Li Junlong Yang Kewei Xie Jianming Zhang Bo Yu Yuan Dai Chuan Fei Guo 《Science Bulletin》 SCIE EI CSCD 2021年第11期1091-1100,M0003,共11页
Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics.Sensitivity is a key parameter of flexible pressure sensors.Whereas introducing surface microstruct... Electronic skins and flexible pressure sensors are important devices for advanced healthcare and intelligent robotics.Sensitivity is a key parameter of flexible pressure sensors.Whereas introducing surface microstructures in a capacitive-type sensor can significantly improve its sensitivity,the signal becomes nonlinear and the pressure response range gets much narrower,significantly limiting the applications of flexible pressure sensors.Here,we designed a pressure sensor that utilizes a nanoscale iontronic interface of an ionic gel layer and a micropillared electrode,for highly linear capacitance-to-pressure response and high sensitivity over a wide pressure range.The micropillars undergo three stages of deformation upon loading:initial contact(0-6 k Pa)and structure buckling(6-12 k Pa)that exhibit a low and nonlinear response,as well as a post-buckling stage that has a high signal linearity with high sensitivity(33.16 k Pa-1)over a broad pressure range of 12-176 k Pa.The high linearity lies in the subtle balance between the structure compression and mechanical matching of the two materials at the gel-electrode interface.Our sensor has been applied in pulse detection,plantar pressure mapping,and grasp task of an artificial limb.This work provides a physical insight in achieving linear response through the design of appropriate microstructures and selection of materials with suitable modulus in flexible pressure sensors,which are potentially useful in intelligent robots and health monitoring. 展开更多
关键词 Iontronic interface LINEARITY Flexible pressure sensor Mechanical matching
原文传递
Boosting pH-Universal Hydrogen Evolution of Molybdenum Disulfide Particles by Interfacial Engineering 被引量:5
5
作者 Liling Liao Lun Yang +5 位作者 Gang Zhao Haiqing Zhou Fengming Cai Yi Li Xiuzhang Wang Fang Yu 《Chinese Journal of Chemistry》 SCIE CAS CSCD 2021年第2期288-294,共7页
The design of high-efficiency non-noble and earth-abundant electrocatalysts for hydrogen evolution reaction(HER)is highly paramount for water splitting and renewable energy systems.Molybdenum disulfide(MoS_(2))with ab... The design of high-efficiency non-noble and earth-abundant electrocatalysts for hydrogen evolution reaction(HER)is highly paramount for water splitting and renewable energy systems.Molybdenum disulfide(MoS_(2))with abundant edge sites can be utilized as a promising alternative,but its catalytic activity is greatly related to the pH values,especially in an alkaline environment due to the extremely high energy barriers for water adsorption and dissociation steps.Here we report an exceptionally efficient and stable electrocatalyst to improve the sluggish HER process of layered MoS_(2)particles in different pH electrolytes,especially in base.The electrocatalyst is constructed by in situ growing selenium-doped MoS_(2)(Se-MoS_(2))nanoparticles on three-dimensional cobalt nickel diselenide(mCo_(0.2)Ni_(0.8)Se_(2))nanostructured arrays.Due to the large number of active edge sites of Se-MoS_(2)particles exposed at the surface,robust electrical conductivity and large surface area of mCo_(0.2)Ni_(0.8)Se_(2)support,and strong interfacial interactions between Se-MoS_(2)and mCo_(0.2)Ni_(0.8)Se_(2),this hybrid catalyst shows very outstanding catalytic HER properties featured by low overpotentials of 30 and 122 mV at 10 and 100 mA/cm^(2)with good operational stability in base,respectively,which outperforms most of inexpensive catalysts consisting of layered MoS_(2),transition metal selenides and sulfides,and it performs as well as noble Pt catalysts.Meanwhile,this electrocatalyst is also very active in neutral and acidic electrolytes,requiring low overpotentials of 93 and 94 mV at 10 mA/cm^(2),respectively,demonstrating its superb pH universality as a HER electrocatalyst with excellent catalytic durability.This study provides a straightforward strategy to construct an efficient non-noble electrocatalyst for driving the HER kinetics in different electrolytes. 展开更多
关键词 Hydrogen evolution reaction Molybdenum disulfide pH-universal Water splitting Heterogeneous catalysis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部