Design and development of high-efficiency and durable oxygen evolution reaction(OER)electrocatalysts is crucial for hydrogen production from seawater splitting.Herein,we report the in situ electrochemical conversion o...Design and development of high-efficiency and durable oxygen evolution reaction(OER)electrocatalysts is crucial for hydrogen production from seawater splitting.Herein,we report the in situ electrochemical conversion of a nanoarray of Ni(TCNQ)2(TCNQ=tetracyanoquinodimethane)on graphite paper into Ni(OH)_(2) nanoparticles confined in a conductive TCNQ nanoarray(Ni(OH)_(2)-TCNQ/GP)by anode oxidation.The Ni(OH)_(2)-TCNQ/GP exhibits high OER performance and demands overpotentials of 340 and 382 mV to deliver 100 mA·cm^(−2) in alkaline freshwater and alkaline seawater,respectively.Meanwhile,the Ni(OH)_(2)-TCNQ/GP also demonstrates steady long-term electrochemical durability for at least 80 h under alkaline seawater.展开更多
基金supported by the National Natural Science Foundation of China(No.22072015)the Opening Fund of Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research(Hunan Normal University)Ministry of Education(2020-02).
文摘Design and development of high-efficiency and durable oxygen evolution reaction(OER)electrocatalysts is crucial for hydrogen production from seawater splitting.Herein,we report the in situ electrochemical conversion of a nanoarray of Ni(TCNQ)2(TCNQ=tetracyanoquinodimethane)on graphite paper into Ni(OH)_(2) nanoparticles confined in a conductive TCNQ nanoarray(Ni(OH)_(2)-TCNQ/GP)by anode oxidation.The Ni(OH)_(2)-TCNQ/GP exhibits high OER performance and demands overpotentials of 340 and 382 mV to deliver 100 mA·cm^(−2) in alkaline freshwater and alkaline seawater,respectively.Meanwhile,the Ni(OH)_(2)-TCNQ/GP also demonstrates steady long-term electrochemical durability for at least 80 h under alkaline seawater.