Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large outpu...Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large output power,displacement and thrust,as well as good workload adaptation and multi-controllable parameters.Based on the domestic and overseas development of high-frequency EHVE,dividing them into servo-valve controlled vibration equipment and rotary-valve controlled vibration equipment.The research status and progress of high-frequency electro-hydraulic vibration control technology(EHVCT)are discussed,from the perspective of vibration waveform control and vibration controller.The problems of current electro-hydraulic vibration system bandwidth and waveform distortion control,stability control,offset control and complex vibration waveform generation in high-frequency vibration conditions are pointed out.Combining the existing rotary-valve controlled high-frequency electro-hydraulic vibration method,a new twin-valve independently controlled high-frequency electro-hydraulic vibration method is proposed to break through the limitations of current electro-hydraulic vibration technology in terms of system frequency bandwidth and waveform distortion.The new method can realize independent adjustment and control of vibration waveform frequency,amplitude and offset under high-frequency vibration conditions,and provide a new idea for accurate simulation of high-frequency vibration waveform.展开更多
In recent years,the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al-Si alloys.However,the effect of Ni on the wear behaviors of Al-Si alloys and Al matrix composi...In recent years,the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al-Si alloys.However,the effect of Ni on the wear behaviors of Al-Si alloys and Al matrix composites,particularly at elevated temperat-ures,remains an understudied area.In this study,Al-Si-Cu-Mg-Ni/20wt%SiC particles(SiCp)composites with varying Ni contents were prepared by using a semisolid stir casting method.The effect of Ni content on the dry sliding wear behavior of the prepared compos-ites was investigated through sliding tests at 25 and 350℃.Results indicated that theθ-Al_(2)Cu phase gradually diminished and eventually disappeared as the Ni content increased from 0wt%to 3wt%.This change was accompanied by the formation and increase inδ-Al_(3)CuNi andε-Al_(3)Ni phases in microstructures.The hardness and ultimate tensile strength of the as-cast composites improved,and the wear rates of the composites decreased from 5.29×10^(−4)to 1.94×10^(−4)mm^(3)/(N∙m)at 25℃and from 20.2×10^(−4)to 7×10^(−4)mm^(3)/(N∙m)at 350℃with the increase in Ni content from 0wt%to 2wt%.The enhancement in performance was due to the presence of strengthening network structures and additional Ni-containing phases in the composites.However,the wear rate of the 3Ni composite was approximately two times higher than that of the 2Ni composite due to the fracture and debonding of theε-Al_(3)Ni phase.Abrasive wear,delamination wear,and oxidation wear were the predominant wear mechanisms of the investigated composites at 25℃,whereas delamination wear and oxid-ation wear were dominant during sliding at 350℃.展开更多
The effects of dietary supplementation with Clostridium butyricum on growth performance and humoral immune response in Miichthys miiuy were evaluated. One hundred and fifty Miichthys miiuy weighing approximately 200-2...The effects of dietary supplementation with Clostridium butyricum on growth performance and humoral immune response in Miichthys miiuy were evaluated. One hundred and fifty Miichthys miiuy weighing approximately 200-260 g were divided into five groups and reared in 15 tanks with closed circuiting culture system. The animals were fed 5 diets: basal diet only (control) or supplemented of the basal diet with C. butyricum at doses of 10^3 (CB1), 10^5 (CB2), 10^7 (CB3) or 10^9 (CB4) CFU/g. Compared with the control, the serum phenoloxidase activity was significantly increased by the supplementation (P〈0.05), acid phosphatases activity was increased significantly (P〈0.05) at the doses of 10^9 CFU/g. Serum lysozyme activity peaked at dose of 10^7 CFU/g and in the skin mucus at dose of 10^9 CFU/g. Immunoglobulin M level in the serum and skin mucus was increased except at dose of 10^3 CFU/g (P〈0.05). The growth at the dose of 10^9 CFU/g was higher than that of the control (P〈0.05). It is concluded that supplementation of C. butyricum can mediate the humoral immune responses and improve the growth performance in Miichthys miiuy.展开更多
Single-layer and multilayer laser additive manufacturing(LAM)for TC11 alloy with different Nd additions was conducted and the effect of Nd addition on microstructure and properties was studied.With the addition of Nd,...Single-layer and multilayer laser additive manufacturing(LAM)for TC11 alloy with different Nd additions was conducted and the effect of Nd addition on microstructure and properties was studied.With the addition of Nd,the aspect ratio of melting pools of single-layer specimens increases and the columnar-to-equiaxed transition occurs.The originalβgrain size andαplate width of TC11−1.0Nd are significantly reduced compared with those of pure TC11 specimens.It is proposed that the evenly distributed fine Nd_(2)O_(3) precipitates of about 1.51μm are formed preferentially during rapid solidification of melting pool,and they serve as heterogeneous nucleation particles to refine the microstructure in the subsequent solidification and solid-state phase transformation.Due to the multiple effects of Nd on the microstructure,the ultimate tensile strength of TC11−1.0Nd increases,while the yield strength,ductility and microhardness decrease compared with those of pure TC11.展开更多
This work is aimed at investigating the online scheduling problem on two parallel and identical machines with a new feature that service requests from various customers are entitled to many different grade of service ...This work is aimed at investigating the online scheduling problem on two parallel and identical machines with a new feature that service requests from various customers are entitled to many different grade of service (GoS) levels, so each job and machine are labelled with the GoS levels, and each job can be processed by a particular machine only when its GoS level is no less than that of the machine. The goal is to minimize the makespan. For non-preemptive version, we propose an optimal online al-gorithm with competitive ratio 5/3. For preemptive version, we propose an optimal online algorithm with competitive ratio 3/2.展开更多
As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundati...As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice.展开更多
The magnesium matrix composites(MMCs) formed by introducing reinforcements to magnesium alloys overcome the limitations of the mechanical properties to a certain extent, presenting unique and excellent properties that...The magnesium matrix composites(MMCs) formed by introducing reinforcements to magnesium alloys overcome the limitations of the mechanical properties to a certain extent, presenting unique and excellent properties that any component does not have, such as high specific stiffness and specific strength, good dimensional stability, outstanding shock absorption performance, excellent electromagnetic shielding and hydrogen storage characteristics, etc. As an emerging manufacturing technology, additive manufacturing(AM) is based on the design of threedimensional(3D) data model to obtain 3D objects through layer-by-layer processing, which possesses the advantages of short manufacturing cycle, high material utilization rate, high degree of design freedom, excellent mechanical properties and the ability to fabricate complex structural components. Combining the high stiffness and high strength properties of MMCs and the technical advantages of AM forming complex structural parts with high performance, the prepared AM MMCs have huge potential advantages and broad application prospects in new high-tech industries such as automobile, aerospace, consumer electronics and biomedicine, etc. This paper reviews the research progress in the field of AM MMCs, mainly introduces the main AM technologies, including selective laser melting(SLM), electron beam selective melting(EBSM), laser engineered net shaping(LENS) and wire and arc additive manufacturing(WAAM). The formation mechanism and control methods of the typical defects including balling effect, porosity, poor fusion, loss of alloy elements and cracks produced during AM are discussed. The main challenges of AM MMCs are proposed from the aspects of composition design and the preparation of powder raw material. The relationship between the microstructure and mechanical properties, corrosion performance and biocompatibility of AM MMCs are elaborated in detail. The application potential of AM MMCs in various fields at present and in the future is introduced. Finally, the development direction and urgent problems to be solved in the AM MMCs are prospected.展开更多
Methods to optimize the production of gamma-aminobutyric acid (GABA) by Lactobacillus brevis CGMCC 1306 were investigated. Results indicated that cell growth was maximal at pH 5.0, while pH 4.5 was pref-erable to GA...Methods to optimize the production of gamma-aminobutyric acid (GABA) by Lactobacillus brevis CGMCC 1306 were investigated. Results indicated that cell growth was maximal at pH 5.0, while pH 4.5 was pref-erable to GABA formation. The optimal temperature for cell growth (35 °C) was lower than that for GABA forma-tion (40 °C). In a two-stage pH and temperature control fermentation, cultures were maintained at pH 5.0 and 35 °C for 32 h, then adjusted to pH 4.5 and 40 °C, GABA production increased remarkably and reached 474.79 mmol·L-1 at 72 h, while it was 398.63 mmol·L-1 with one stage pH and temperature control process, in which cultivation con-ditions were constantly controlled at pH 5.0 and 35 °C. In order to avoid the inhibition of cell growth at higher L-monosodium glutamate (L-MSG) concentrations, the two-stage control fermentation with substrate feeding strat-egy was applied to GABA production, with 106.87 mmol (20 g) L-MSG supplemented into the shaking-flask at 32 h and 56 h post-inoculation separately. The GABA concentration reached 526.33 mmol·L-1 at 72 h with the fer-mentation volume increased by 38%. These results will provide primary data to realize large-scale production of GABA by L. brevis CGMCC 1306.展开更多
This paper focuses on the analysis of running conditions and machining processes of conical cam with oscillating follower. We point out the common errors existing in the design and machining of the widely used plane e...This paper focuses on the analysis of running conditions and machining processes of conical cam with oscillating follower. We point out the common errors existing in the design and machining of the widely used plane expansion method of conical cam trough-out line. We show that the motion can be divided into two parts, i.e. the oscillating motion of oscillating bar and the rotary motion of oscillating bar relative to the conical cam. By increasing the rotary motion of oscillating bar, the motion path of tapered roller on oscillating bar (i.e. contour surface of conical cam) can be expanded on the cylinder. Based on these analyses, we present a creative and effective designing and machining method for 3D curve expansion of conical cam with oscillating follower.展开更多
In order to improve the production of human-like collagen III(HLC III)by fed-batch culture of recombinant Escherichia coli BL21,the Plackett-Burman and Box-Behnken design were applied to optimize the fermentation proc...In order to improve the production of human-like collagen III(HLC III)by fed-batch culture of recombinant Escherichia coli BL21,the Plackett-Burman and Box-Behnken design were applied to optimize the fermentation process parameters.Three variables(induction time,inoculum age and pH),which have significant effects on HLC III production,were selected from eight variables by Plackett-Burman design.With the regression coefficient analysis in the Box-Behnken design,a relationship between HLC III production and three significant factors was obtained,and the optimum levels of the three variables were as follows:induction time 3.2h,inoculum age 12.6 h and pH 6.7.The 3D response surface plots and 2D contour plots created by the Box-Behnken design showed that the interaction between induction time and pH and that between innoculum age and pH were significant.An average 9.68 g·L1HLC III production was attained in the validation experiment under optimized condition,which was 80%higher than the yield of 5.36 g·L1before optimization.展开更多
The cast Al-Si alloy was fabricated using the Additive Pressure Casting(APC)method.The effects of holding pressure from 50 to 400 k Pa on the density,cooling rate,and mechanical properties of the alloy,and the corresp...The cast Al-Si alloy was fabricated using the Additive Pressure Casting(APC)method.The effects of holding pressure from 50 to 400 k Pa on the density,cooling rate,and mechanical properties of the alloy,and the corresponding mechanism were discussed.The results indicate that the application of high holding pressure(300 k Pa)enhances the feeding ability of the alloy,leading to an increase of the density.Meanwhile,the cooling rate of the alloy is increased by 100%.In addition,the tensile testing results show that the increase of holding pressure from 50 to 300 k Pa improves the tensile strength and elongation of the alloy by 6.2%and 81.3%,respectively.However,excessive holding pressure(400 k Pa)might lower the density and cooling rate of the alloy due to the feeding channels being blocked.展开更多
The effects of glucose and inorganic phosphate on mycelium growth and spinosad production with Saccharopolyspora spinosa were studied. The results showed that the increase of glucose concentration from 18.6g·L^-1...The effects of glucose and inorganic phosphate on mycelium growth and spinosad production with Saccharopolyspora spinosa were studied. The results showed that the increase of glucose concentration from 18.6g·L^-1 to 58.8g·L^-1 could promote the mycelium growth and spinosad production. And when the glucose con- centration increased from 58.8g·L^-1 to 79.6g·L^-1, no obvious change was detected but a slight drop in spinosad production was observed, whereas, when the glucose concentration increased from 79.6g·L^-1 to 115.3g·L^-1, substantial decrease in both mycelium growth and spinosad production occurred. The increase of phosphate concentra- tion from 3.68mmol·L^-1 to 29.41mmol·L^-1 rendered corresponding increase in mycelium growth and spinosad production. When phosphate concentration increased from 29.41mmol·L^-1 to 44.12mmol·L^-1, mycelium growth slightly increased and spinosad production dropped, while when phosphate concentration increased from 44.12mmol·L^-1 to 57.62mmol·L^-1, both mycelium growth and spinosad production decreased sharply. Conclusively, the optimal initial concentration of glucose and phosphate is 58.8g·L^-1 and 29.41mmol·L^-1, respectively. The spinosad fermentation in the production medium containing 58.8g·L^-1 glucose and 29.41mmol·L^-1 phosphate was scaled up in 5-L fermentation and the spinosad production reached 507mg·L^-1, which was 28% higher thar that in the flask fermentation.展开更多
A rate model, which considers axial dispersion, external mass transfer, intraparticle diffusion and nonlinear isotherms, and ports periodic switching is adopted to simulate the simulated moving bed (SMB) process. Th...A rate model, which considers axial dispersion, external mass transfer, intraparticle diffusion and nonlinear isotherms, and ports periodic switching is adopted to simulate the simulated moving bed (SMB) process. The effects of flow rate in Sections 2 and 3 and switching time on the operating performance parameters: purity, recovery, productivity and dcsorbent consumption are studied. A simulation approach is applied to simulate the operation and performance of the SMB. The model predicts the performance of the transient and cyclic steady state behavior to a reasonably good extent, and provides guidance operation condition of the SMB process.展开更多
A new feeding mode for a simulated moving bed(SMB) is proposed.The outlet stream from zone II is collected at regular intervals.The concentration of the solution is increased by dissolving raw materials and then fed t...A new feeding mode for a simulated moving bed(SMB) is proposed.The outlet stream from zone II is collected at regular intervals.The concentration of the solution is increased by dissolving raw materials and then fed to zone III as the feed stream during the next collection interval.In this feeding mode,the concentration of the stream fed to zone III is identical to that of original feed,while in a conventional SMB,the feed is diluted by mix-ing with the outlet stream of zone II before feeding to zone III.The new feeding mode increases the inlet concentra-tion of zone III.A modeling investigation shows that higher inlet concentration of zone III increases the height of concentration band in SMB,improving the separation performance significantly.In comparison with the traditonal feeding mode,the new feeding mode increases the productivity by 23.52%and decreases the solvent consumption by 22.56%,so as to increase the raffinate and extract concentrations by 53.17%and 20.38%,respectively.The col-lection interval for the outlet stream from zone II has no effect on the separation performance after reaching the steady state,so that the collection interval can be increased to make the operation more convenient.展开更多
The control method for machining non-cylinder pin hole of piston was studied systematically. A new method was presented by embedding giant magnetostrictive material (GMM) into the tool bar proper position. The model i...The control method for machining non-cylinder pin hole of piston was studied systematically. A new method was presented by embedding giant magnetostrictive material (GMM) into the tool bar proper position. The model is established to characterize the relation between control current of coil and deformation of tool rod. A series of tests on deformation of giant magnetostrictive tool bar were done and the results validated the feasibility of the principle. The methods of measuring magne- tostrictive coefficient of rare earth GMM were analyzed. The measuring device with the bias field and prestress was designed. A series of experiments were done to test magnetostrictive coefficient. Experimental results supplied accurate characteristic pa- rameter for designing application device of GMM. The constitution of the developed control system made up of displacement detection and temperature detection for thermal deformation compensation was also introduced. The developed machine tool for boring the non-cylinder pin hole of piston has the micron order accuracy. This control method can be applied to other areas for machining precision or complex parts.展开更多
Halogenated methyl-phenyl ethers (anisoles) are ubiquitous organic compounds in the environment. In the present study, geometrical optimization and electrostatic potential calculations have been performed for 42 hal...Halogenated methyl-phenyl ethers (anisoles) are ubiquitous organic compounds in the environment. In the present study, geometrical optimization and electrostatic potential calculations have been performed for 42 halogenated anisoles at the HF/6-31 G^* level. A number of statistically based parameters have been obtained. By multiple regression method, linear relationships between the gas-chromatographic relative retention time (RRT) and structural descriptors have been established for the training set of 32 halogenated anisoles. The result showed that the parameters derived from electrostatic potentials (ESPs) together with the molecular volume (Vmc) could be well used to express the quantitative structure-RRT relationships of halogenated anisoles. The best two-variable regression model gives a correlation coefficient of 0.980 and a standard deviation of 0.07, and the leave-one-out cross-validated correlation coefficient is 0.975. The goodness of the model has been further validated through exploring the predictive power for the testing set of 10 halogenated anisoles.展开更多
To avoid the damage caused by big wind and wave in cage culture, and to solve the problem of energy supply faced by automatic breeding equipment, a new type of floating breakwater, named as Savonius double buoy breakw...To avoid the damage caused by big wind and wave in cage culture, and to solve the problem of energy supply faced by automatic breeding equipment, a new type of floating breakwater, named as Savonius double buoy breakwater(SDBB), is proposed in the paper. The floating breakwater is composed of HDPE cylindrical double buoys and horizontal axis Savonius rotors, and has the functions of wave-absorbing and energy-capturing. Based on the linear wave theory and energy conservation law, the Fourier Transform was applied to separate the two-dimensional wave frequency domain, and the energy captured by the rotors and absorbed by the floating breakwater were calculated.Experiments were conducted in a two-dimensional wave-making flume, and the transmitted waves at different wave heights and periods, the tension of mooring lines, and the rotational torque exerted on the Savonius rotor were measured. A series of performance comparison tests were also performed on the new floating breakwater and the traditional double-floating breakwater. Results show that the new floating breakwater is better than the traditional one in terms of reducing wave transmittance, and the combination of the floating breakwater with Savonius rotors can provide for marine aquaculture equipments with green power supply to a certain degree of self-sufficiency.展开更多
In this work, polypropylene (PP)/polystyrene (PS) blends with different organoclay concentrations were prepared via melt compounding. Differing from the results of previous reports, the organoclay platelets are mostly...In this work, polypropylene (PP)/polystyrene (PS) blends with different organoclay concentrations were prepared via melt compounding. Differing from the results of previous reports, the organoclay platelets are mostly located in the dispersed PS phase instead of the interface. The dimensions of the dispersed PS droplets are greatly reduced and apparent compatibilization effect still exists, which cannot be explained by the traditional compatibilization mechanism. A novel compatibilization mecha- nism, "cutting" to apparently compatibilize the immiscible PP/PS blends was proposed. The organoclay platelets tend to form a special "knife-like structure" in the PS domain under the shear stress of the continuous PP phase during compounding. The "clay knife" can split the dispersed PS domain apart and lead to the dramatic reduction of the dispersed domain size.展开更多
A novel technique of introducing gas bubble stirring during solidification was studied to prepare Al-Si semi-solid slurry. The microstructure evolution of the slurry during slow cooling process after stirring was inve...A novel technique of introducing gas bubble stirring during solidification was studied to prepare Al-Si semi-solid slurry. The microstructure evolution of the slurry during slow cooling process after stirring was investigated. The effects of the solidification rate on the microstructure of the semi-solid slurry were investigated under three different solidification conditions. The results show that fine non-dendritic slurry can be obtained using the gas bubble stirring method. Ripening and coarsening of primary Al grains are observed during the slow cooling process, and at last coarsened eutectic Si appears. Primary Al grains with different sizes and eutectic Si are obtained, corresponding to three different solidification rates.展开更多
The Bi_4Ti_3O_(12)/g-C_3N_4 composites with microsheet and nanosheet structure were prepared through facile ultrasonic-assisted method. The SEM and TEM results suggested that the nanosheets g-C_3N_4 were stacked on th...The Bi_4Ti_3O_(12)/g-C_3N_4 composites with microsheet and nanosheet structure were prepared through facile ultrasonic-assisted method. The SEM and TEM results suggested that the nanosheets g-C_3N_4 were stacked on the surface of regular Bi_4Ti_3O_(12) sheets. Comparing with pure Bi_4Ti_3O_(12) and g-C_3N_4, the Bi_4Ti_3O_(12)/g-C_3N_4 composites showed significant enhancement in photocatalytic efficiency for the degradation of RhB in solution. With the mass ratio of g-C_3N_4 increasing to 10 wt%, the Bi_4Ti_3O_(12)/g-C_3N_4-10% presented the best photocatalytic activity. Its photocatalysis reaction constant was approximately 2 times higher than the single component Bi_4Ti_3O_(12) or g-C_3N_4. Meanwhile, good stability and durability for the Bi_4Ti_3O_(12)/g-C_3N_4-10% were confirmed by the recycling experiment and FT-IR analysis. The possible mechanism for the improvements was the matched band positions and the effective separation of photo-excited electrons(e-) and holes(h+). Furthermore, based on the results of active species trapping, photo-generated holes(h+) and superoxide radical(·O2-) could be the main radicals in reaction.展开更多
基金Supported by National Natural Science Foundation of China.(Grant Nos.51605431,51675472)
文摘Electro-hydraulic vibration equipment(EHVE)is widely used in vibration environment simulation tests,such as vehicles,weapons,ships,aerospace,nuclear industries and seismic waves replication,etc.,due to its large output power,displacement and thrust,as well as good workload adaptation and multi-controllable parameters.Based on the domestic and overseas development of high-frequency EHVE,dividing them into servo-valve controlled vibration equipment and rotary-valve controlled vibration equipment.The research status and progress of high-frequency electro-hydraulic vibration control technology(EHVCT)are discussed,from the perspective of vibration waveform control and vibration controller.The problems of current electro-hydraulic vibration system bandwidth and waveform distortion control,stability control,offset control and complex vibration waveform generation in high-frequency vibration conditions are pointed out.Combining the existing rotary-valve controlled high-frequency electro-hydraulic vibration method,a new twin-valve independently controlled high-frequency electro-hydraulic vibration method is proposed to break through the limitations of current electro-hydraulic vibration technology in terms of system frequency bandwidth and waveform distortion.The new method can realize independent adjustment and control of vibration waveform frequency,amplitude and offset under high-frequency vibration conditions,and provide a new idea for accurate simulation of high-frequency vibration waveform.
基金the financial support from Ningbo Institute of Technology, Beihang University
文摘In recent years,the addition of Ni has been widely acknowledged to be capable of enhancing the mechanical properties of Al-Si alloys.However,the effect of Ni on the wear behaviors of Al-Si alloys and Al matrix composites,particularly at elevated temperat-ures,remains an understudied area.In this study,Al-Si-Cu-Mg-Ni/20wt%SiC particles(SiCp)composites with varying Ni contents were prepared by using a semisolid stir casting method.The effect of Ni content on the dry sliding wear behavior of the prepared compos-ites was investigated through sliding tests at 25 and 350℃.Results indicated that theθ-Al_(2)Cu phase gradually diminished and eventually disappeared as the Ni content increased from 0wt%to 3wt%.This change was accompanied by the formation and increase inδ-Al_(3)CuNi andε-Al_(3)Ni phases in microstructures.The hardness and ultimate tensile strength of the as-cast composites improved,and the wear rates of the composites decreased from 5.29×10^(−4)to 1.94×10^(−4)mm^(3)/(N∙m)at 25℃and from 20.2×10^(−4)to 7×10^(−4)mm^(3)/(N∙m)at 350℃with the increase in Ni content from 0wt%to 2wt%.The enhancement in performance was due to the presence of strengthening network structures and additional Ni-containing phases in the composites.However,the wear rate of the 3Ni composite was approximately two times higher than that of the 2Ni composite due to the fracture and debonding of theε-Al_(3)Ni phase.Abrasive wear,delamination wear,and oxidation wear were the predominant wear mechanisms of the investigated composites at 25℃,whereas delamination wear and oxid-ation wear were dominant during sliding at 350℃.
基金Project supported by the Bureau of Science and Technology of Zhejiang Province (No. 2004201), China and the Youth Fund of Ningbo City (No. 2004A620008), China
文摘The effects of dietary supplementation with Clostridium butyricum on growth performance and humoral immune response in Miichthys miiuy were evaluated. One hundred and fifty Miichthys miiuy weighing approximately 200-260 g were divided into five groups and reared in 15 tanks with closed circuiting culture system. The animals were fed 5 diets: basal diet only (control) or supplemented of the basal diet with C. butyricum at doses of 10^3 (CB1), 10^5 (CB2), 10^7 (CB3) or 10^9 (CB4) CFU/g. Compared with the control, the serum phenoloxidase activity was significantly increased by the supplementation (P〈0.05), acid phosphatases activity was increased significantly (P〈0.05) at the doses of 10^9 CFU/g. Serum lysozyme activity peaked at dose of 10^7 CFU/g and in the skin mucus at dose of 10^9 CFU/g. Immunoglobulin M level in the serum and skin mucus was increased except at dose of 10^3 CFU/g (P〈0.05). The growth at the dose of 10^9 CFU/g was higher than that of the control (P〈0.05). It is concluded that supplementation of C. butyricum can mediate the humoral immune responses and improve the growth performance in Miichthys miiuy.
基金financially supported by the National Natural Science Foundation of China(Nos.51801009,52071005)the Youth Talent Support Program of Beihang University,China(No.YWF-21-BJ-J-1143)Shuangyiliu Fund of Beihang University,China(No.030810)。
文摘Single-layer and multilayer laser additive manufacturing(LAM)for TC11 alloy with different Nd additions was conducted and the effect of Nd addition on microstructure and properties was studied.With the addition of Nd,the aspect ratio of melting pools of single-layer specimens increases and the columnar-to-equiaxed transition occurs.The originalβgrain size andαplate width of TC11−1.0Nd are significantly reduced compared with those of pure TC11 specimens.It is proposed that the evenly distributed fine Nd_(2)O_(3) precipitates of about 1.51μm are formed preferentially during rapid solidification of melting pool,and they serve as heterogeneous nucleation particles to refine the microstructure in the subsequent solidification and solid-state phase transformation.Due to the multiple effects of Nd on the microstructure,the ultimate tensile strength of TC11−1.0Nd increases,while the yield strength,ductility and microhardness decrease compared with those of pure TC11.
基金Project supported by the National Natural Science Foundation of China (No. 10271110) and the Teaching and Research Award Pro-gram for Outstanding Young Teachers in Higher Education, Institu-tions of MOE, China
文摘This work is aimed at investigating the online scheduling problem on two parallel and identical machines with a new feature that service requests from various customers are entitled to many different grade of service (GoS) levels, so each job and machine are labelled with the GoS levels, and each job can be processed by a particular machine only when its GoS level is no less than that of the machine. The goal is to minimize the makespan. For non-preemptive version, we propose an optimal online al-gorithm with competitive ratio 5/3. For preemptive version, we propose an optimal online algorithm with competitive ratio 3/2.
文摘As a special geological phenomenon, the character of collapsible loess foundation is collapsible when penetrated by water. This character leads to the soil losing load bearing capacity largely and may lead to foundation failure. Pile is a popular foundation used in collapsible loess. The squeezed branch and plate pile is a new type of pile developed in recent years and has not be used in a project before. In this paper three squeezed branch and plate piles are tested in collapsible loess after immersion processing. The results may be used for reference in similar construction project, and to provide theoretical references for de- signing of the squeezed branch and plate piles in engineering practice.
基金financially supported by the Defense Industrial Technology Development Program (no.JCKY2021601B203)Ningbo Yongjiang Talent Project (no.YJ0222012)Ningbo Beilun District “Strong Port and Strong District Talent Introduction” Project (no.QG0222002)。
文摘The magnesium matrix composites(MMCs) formed by introducing reinforcements to magnesium alloys overcome the limitations of the mechanical properties to a certain extent, presenting unique and excellent properties that any component does not have, such as high specific stiffness and specific strength, good dimensional stability, outstanding shock absorption performance, excellent electromagnetic shielding and hydrogen storage characteristics, etc. As an emerging manufacturing technology, additive manufacturing(AM) is based on the design of threedimensional(3D) data model to obtain 3D objects through layer-by-layer processing, which possesses the advantages of short manufacturing cycle, high material utilization rate, high degree of design freedom, excellent mechanical properties and the ability to fabricate complex structural components. Combining the high stiffness and high strength properties of MMCs and the technical advantages of AM forming complex structural parts with high performance, the prepared AM MMCs have huge potential advantages and broad application prospects in new high-tech industries such as automobile, aerospace, consumer electronics and biomedicine, etc. This paper reviews the research progress in the field of AM MMCs, mainly introduces the main AM technologies, including selective laser melting(SLM), electron beam selective melting(EBSM), laser engineered net shaping(LENS) and wire and arc additive manufacturing(WAAM). The formation mechanism and control methods of the typical defects including balling effect, porosity, poor fusion, loss of alloy elements and cracks produced during AM are discussed. The main challenges of AM MMCs are proposed from the aspects of composition design and the preparation of powder raw material. The relationship between the microstructure and mechanical properties, corrosion performance and biocompatibility of AM MMCs are elaborated in detail. The application potential of AM MMCs in various fields at present and in the future is introduced. Finally, the development direction and urgent problems to be solved in the AM MMCs are prospected.
基金Supported by the National'Naturai Science Foundation of China (30970638, 21176220 and 31240054), Zhejiang Provincial Natural Science Foundation (Z13B06008) and the National Basic Research Program of China (2007CB714305).
文摘Methods to optimize the production of gamma-aminobutyric acid (GABA) by Lactobacillus brevis CGMCC 1306 were investigated. Results indicated that cell growth was maximal at pH 5.0, while pH 4.5 was pref-erable to GABA formation. The optimal temperature for cell growth (35 °C) was lower than that for GABA forma-tion (40 °C). In a two-stage pH and temperature control fermentation, cultures were maintained at pH 5.0 and 35 °C for 32 h, then adjusted to pH 4.5 and 40 °C, GABA production increased remarkably and reached 474.79 mmol·L-1 at 72 h, while it was 398.63 mmol·L-1 with one stage pH and temperature control process, in which cultivation con-ditions were constantly controlled at pH 5.0 and 35 °C. In order to avoid the inhibition of cell growth at higher L-monosodium glutamate (L-MSG) concentrations, the two-stage control fermentation with substrate feeding strat-egy was applied to GABA production, with 106.87 mmol (20 g) L-MSG supplemented into the shaking-flask at 32 h and 56 h post-inoculation separately. The GABA concentration reached 526.33 mmol·L-1 at 72 h with the fer-mentation volume increased by 38%. These results will provide primary data to realize large-scale production of GABA by L. brevis CGMCC 1306.
基金Project supported by the National Natural Science Foundation of China (No. 50575205)the HiTech Research and Development Program (863) of China (No. 2006AA04Z233)and the Natural Science Foundation of Zhejiang Province (Nos. Y104243 and Y105686), China
文摘This paper focuses on the analysis of running conditions and machining processes of conical cam with oscillating follower. We point out the common errors existing in the design and machining of the widely used plane expansion method of conical cam trough-out line. We show that the motion can be divided into two parts, i.e. the oscillating motion of oscillating bar and the rotary motion of oscillating bar relative to the conical cam. By increasing the rotary motion of oscillating bar, the motion path of tapered roller on oscillating bar (i.e. contour surface of conical cam) can be expanded on the cylinder. Based on these analyses, we present a creative and effective designing and machining method for 3D curve expansion of conical cam with oscillating follower.
基金Supported by the National Natural Science Foundation of China(20776119) the National High Technology Research and Development Program of China(2007AA03Z456A) the Special Research Program of the Education Department of Shaanxi Province(07JK417)
文摘In order to improve the production of human-like collagen III(HLC III)by fed-batch culture of recombinant Escherichia coli BL21,the Plackett-Burman and Box-Behnken design were applied to optimize the fermentation process parameters.Three variables(induction time,inoculum age and pH),which have significant effects on HLC III production,were selected from eight variables by Plackett-Burman design.With the regression coefficient analysis in the Box-Behnken design,a relationship between HLC III production and three significant factors was obtained,and the optimum levels of the three variables were as follows:induction time 3.2h,inoculum age 12.6 h and pH 6.7.The 3D response surface plots and 2D contour plots created by the Box-Behnken design showed that the interaction between induction time and pH and that between innoculum age and pH were significant.An average 9.68 g·L1HLC III production was attained in the validation experiment under optimized condition,which was 80%higher than the yield of 5.36 g·L1before optimization.
基金National Key Research Project of China(No.2016YFB0300901).
文摘The cast Al-Si alloy was fabricated using the Additive Pressure Casting(APC)method.The effects of holding pressure from 50 to 400 k Pa on the density,cooling rate,and mechanical properties of the alloy,and the corresponding mechanism were discussed.The results indicate that the application of high holding pressure(300 k Pa)enhances the feeding ability of the alloy,leading to an increase of the density.Meanwhile,the cooling rate of the alloy is increased by 100%.In addition,the tensile testing results show that the increase of holding pressure from 50 to 300 k Pa improves the tensile strength and elongation of the alloy by 6.2%and 81.3%,respectively.However,excessive holding pressure(400 k Pa)might lower the density and cooling rate of the alloy due to the feeding channels being blocked.
文摘The effects of glucose and inorganic phosphate on mycelium growth and spinosad production with Saccharopolyspora spinosa were studied. The results showed that the increase of glucose concentration from 18.6g·L^-1 to 58.8g·L^-1 could promote the mycelium growth and spinosad production. And when the glucose con- centration increased from 58.8g·L^-1 to 79.6g·L^-1, no obvious change was detected but a slight drop in spinosad production was observed, whereas, when the glucose concentration increased from 79.6g·L^-1 to 115.3g·L^-1, substantial decrease in both mycelium growth and spinosad production occurred. The increase of phosphate concentra- tion from 3.68mmol·L^-1 to 29.41mmol·L^-1 rendered corresponding increase in mycelium growth and spinosad production. When phosphate concentration increased from 29.41mmol·L^-1 to 44.12mmol·L^-1, mycelium growth slightly increased and spinosad production dropped, while when phosphate concentration increased from 44.12mmol·L^-1 to 57.62mmol·L^-1, both mycelium growth and spinosad production decreased sharply. Conclusively, the optimal initial concentration of glucose and phosphate is 58.8g·L^-1 and 29.41mmol·L^-1, respectively. The spinosad fermentation in the production medium containing 58.8g·L^-1 glucose and 29.41mmol·L^-1 phosphate was scaled up in 5-L fermentation and the spinosad production reached 507mg·L^-1, which was 28% higher thar that in the flask fermentation.
基金Supported by the Doctoral Program Foundation of the Institution of Higher Education of China (No.20040335045).
文摘A rate model, which considers axial dispersion, external mass transfer, intraparticle diffusion and nonlinear isotherms, and ports periodic switching is adopted to simulate the simulated moving bed (SMB) process. The effects of flow rate in Sections 2 and 3 and switching time on the operating performance parameters: purity, recovery, productivity and dcsorbent consumption are studied. A simulation approach is applied to simulate the operation and performance of the SMB. The model predicts the performance of the transient and cyclic steady state behavior to a reasonably good extent, and provides guidance operation condition of the SMB process.
基金Supported by the Natural Science Foundation of Ningbo(2009A610153)
文摘A new feeding mode for a simulated moving bed(SMB) is proposed.The outlet stream from zone II is collected at regular intervals.The concentration of the solution is increased by dissolving raw materials and then fed to zone III as the feed stream during the next collection interval.In this feeding mode,the concentration of the stream fed to zone III is identical to that of original feed,while in a conventional SMB,the feed is diluted by mix-ing with the outlet stream of zone II before feeding to zone III.The new feeding mode increases the inlet concentra-tion of zone III.A modeling investigation shows that higher inlet concentration of zone III increases the height of concentration band in SMB,improving the separation performance significantly.In comparison with the traditonal feeding mode,the new feeding mode increases the productivity by 23.52%and decreases the solvent consumption by 22.56%,so as to increase the raffinate and extract concentrations by 53.17%and 20.38%,respectively.The col-lection interval for the outlet stream from zone II has no effect on the separation performance after reaching the steady state,so that the collection interval can be increased to make the operation more convenient.
基金Project supported by the National Natural Science Foundation of China (No. 50575205) and the Natural Science Foundation of Zheji-ang Province (Nos. Y104243 and Y105686), China
文摘The control method for machining non-cylinder pin hole of piston was studied systematically. A new method was presented by embedding giant magnetostrictive material (GMM) into the tool bar proper position. The model is established to characterize the relation between control current of coil and deformation of tool rod. A series of tests on deformation of giant magnetostrictive tool bar were done and the results validated the feasibility of the principle. The methods of measuring magne- tostrictive coefficient of rare earth GMM were analyzed. The measuring device with the bias field and prestress was designed. A series of experiments were done to test magnetostrictive coefficient. Experimental results supplied accurate characteristic pa- rameter for designing application device of GMM. The constitution of the developed control system made up of displacement detection and temperature detection for thermal deformation compensation was also introduced. The developed machine tool for boring the non-cylinder pin hole of piston has the micron order accuracy. This control method can be applied to other areas for machining precision or complex parts.
基金This work was supported by the National Natural Science Foundation of China (No. 20502022) and the Ph.D. Fund of Ningbo ( No. 2004A610010)
文摘Halogenated methyl-phenyl ethers (anisoles) are ubiquitous organic compounds in the environment. In the present study, geometrical optimization and electrostatic potential calculations have been performed for 42 halogenated anisoles at the HF/6-31 G^* level. A number of statistically based parameters have been obtained. By multiple regression method, linear relationships between the gas-chromatographic relative retention time (RRT) and structural descriptors have been established for the training set of 32 halogenated anisoles. The result showed that the parameters derived from electrostatic potentials (ESPs) together with the molecular volume (Vmc) could be well used to express the quantitative structure-RRT relationships of halogenated anisoles. The best two-variable regression model gives a correlation coefficient of 0.980 and a standard deviation of 0.07, and the leave-one-out cross-validated correlation coefficient is 0.975. The goodness of the model has been further validated through exploring the predictive power for the testing set of 10 halogenated anisoles.
基金financially supported by the National Natural Science Foundation of China (Grant no. 51605431)Major Science and Technology Projects of Ningbo (Grant no. 2015C110015 and 2017C110005)。
文摘To avoid the damage caused by big wind and wave in cage culture, and to solve the problem of energy supply faced by automatic breeding equipment, a new type of floating breakwater, named as Savonius double buoy breakwater(SDBB), is proposed in the paper. The floating breakwater is composed of HDPE cylindrical double buoys and horizontal axis Savonius rotors, and has the functions of wave-absorbing and energy-capturing. Based on the linear wave theory and energy conservation law, the Fourier Transform was applied to separate the two-dimensional wave frequency domain, and the energy captured by the rotors and absorbed by the floating breakwater were calculated.Experiments were conducted in a two-dimensional wave-making flume, and the transmitted waves at different wave heights and periods, the tension of mooring lines, and the rotational torque exerted on the Savonius rotor were measured. A series of performance comparison tests were also performed on the new floating breakwater and the traditional double-floating breakwater. Results show that the new floating breakwater is better than the traditional one in terms of reducing wave transmittance, and the combination of the floating breakwater with Savonius rotors can provide for marine aquaculture equipments with green power supply to a certain degree of self-sufficiency.
文摘In this work, polypropylene (PP)/polystyrene (PS) blends with different organoclay concentrations were prepared via melt compounding. Differing from the results of previous reports, the organoclay platelets are mostly located in the dispersed PS phase instead of the interface. The dimensions of the dispersed PS droplets are greatly reduced and apparent compatibilization effect still exists, which cannot be explained by the traditional compatibilization mechanism. A novel compatibilization mecha- nism, "cutting" to apparently compatibilize the immiscible PP/PS blends was proposed. The organoclay platelets tend to form a special "knife-like structure" in the PS domain under the shear stress of the continuous PP phase during compounding. The "clay knife" can split the dispersed PS domain apart and lead to the dramatic reduction of the dispersed domain size.
基金Project(50775085)supported by the National Natural Science Foundation of ChinaProject(M2009061)supported by Special Fund for Basic Research and Operating Expenses of Central College,ChinaProject(2008A610049)supported by the Natural Science Foundation of Ningbo City,China
文摘A novel technique of introducing gas bubble stirring during solidification was studied to prepare Al-Si semi-solid slurry. The microstructure evolution of the slurry during slow cooling process after stirring was investigated. The effects of the solidification rate on the microstructure of the semi-solid slurry were investigated under three different solidification conditions. The results show that fine non-dendritic slurry can be obtained using the gas bubble stirring method. Ripening and coarsening of primary Al grains are observed during the slow cooling process, and at last coarsened eutectic Si appears. Primary Al grains with different sizes and eutectic Si are obtained, corresponding to three different solidification rates.
基金Supported by the National Natural Science Foundation of China(51509220)the Natural Science Foundation of Zhejiang Province(LQ14E090003)+1 种基金Ningbo Science and Technology Plan Projects(2014C50007,2014C51003)Ningbo major social development projects(2017C510006)
文摘The Bi_4Ti_3O_(12)/g-C_3N_4 composites with microsheet and nanosheet structure were prepared through facile ultrasonic-assisted method. The SEM and TEM results suggested that the nanosheets g-C_3N_4 were stacked on the surface of regular Bi_4Ti_3O_(12) sheets. Comparing with pure Bi_4Ti_3O_(12) and g-C_3N_4, the Bi_4Ti_3O_(12)/g-C_3N_4 composites showed significant enhancement in photocatalytic efficiency for the degradation of RhB in solution. With the mass ratio of g-C_3N_4 increasing to 10 wt%, the Bi_4Ti_3O_(12)/g-C_3N_4-10% presented the best photocatalytic activity. Its photocatalysis reaction constant was approximately 2 times higher than the single component Bi_4Ti_3O_(12) or g-C_3N_4. Meanwhile, good stability and durability for the Bi_4Ti_3O_(12)/g-C_3N_4-10% were confirmed by the recycling experiment and FT-IR analysis. The possible mechanism for the improvements was the matched band positions and the effective separation of photo-excited electrons(e-) and holes(h+). Furthermore, based on the results of active species trapping, photo-generated holes(h+) and superoxide radical(·O2-) could be the main radicals in reaction.