A commercially pure titanium sheet with titanium carbide (TiC) precipitated in its surface layer was anodized in NH4NO3 aqueous solution and heat treated in air. The photocatalytic activity of titanium dioxide powder ...A commercially pure titanium sheet with titanium carbide (TiC) precipitated in its surface layer was anodized in NH4NO3 aqueous solution and heat treated in air. The photocatalytic activity of titanium dioxide powder collected from the surface of the anodized titanium sheet was evaluated under ultra-violet and visible light irradiation. It showed relatively high photocatalytic activity in 0.1 mol/l potassium iodide solution, which was almost equal to the activity level of TiO2 powder (P-25) manufactured by Degussa Corporation. The better photocatalytic activity under ultra-violet irradiation is considered to be related to the formation of anatase type titanium dioxide. Photocatalytic activity under visible light irradiation was also observed, which was considered to be attributable to impurity doping, (carbon), in the titanium dioxide powder.展开更多
A commercially pure titanium sheet precipitated TiC in the surface layer was fabricated by anodic oxidation in NH4NO3 solution and heat treatment in air. The fabricated sheet showed relatively high photocatalytic acti...A commercially pure titanium sheet precipitated TiC in the surface layer was fabricated by anodic oxidation in NH4NO3 solution and heat treatment in air. The fabricated sheet showed relatively high photocatalytic activity in 0.1 M KI solution, which was close to the activity level of the P-25 particle made by Degussa Corporation. It exhibited photocatalytic activity in antifungal and antivirus tests under black light irradiation. The better photocatalytic activity under black light irradiation is considered to be related to the formation of anatase and rutile type titanium dioxides and rough surface. It also showed photocatalytic activity under visible light irradiation, which is considered to be attributable to carbon and nitrogen doping in titanium dioxide.展开更多
Black-colored titanium was obtained by anodic oxidation of a commercially pure grade-1 titanium sheet in a 0.06 M NH4NO3 solution, followed by heat treatment at 773 K for 1 h in a vacuum furnace. The resulting oxide l...Black-colored titanium was obtained by anodic oxidation of a commercially pure grade-1 titanium sheet in a 0.06 M NH4NO3 solution, followed by heat treatment at 773 K for 1 h in a vacuum furnace. The resulting oxide layer on the titanium substrate was examined by X-ray photoelectron spectroscopy, X-ray diffraction, glow discharge spectroscopy, and scanning electron microscopy. It was found that the oxide layer on the black-colored titanium sheet was several micrometers thick and mainly consisted of rutile TiO2 exhibiting a sponge like nanoporous structure. It is considered that the black-colored appearance of the titanium sheet is due to the sponge like nanoporous structure of the oxide layer absorbing the incident light. The photocatalytic activity of the black-colored titanium sheet was examined by observing the decomposition of a methylene blue (MB, C16H18N3SCl) solution under ultraviolet irradiation due to the existence of rutile TiO2. The sheet also exhibited photocatalytic activity under visible light irradiation. It is believed that the photocatalytic response upon irradiation with white light is due to carbon doping of the titanium oxide layer on the titanium substrate.展开更多
To clarify the effects of the vertical angle of a conical punch on stretch flangeability, hole expansion forming tests were conducted. Test results showed that the hole expansion ratio becomes larger as the vertical a...To clarify the effects of the vertical angle of a conical punch on stretch flangeability, hole expansion forming tests were conducted. Test results showed that the hole expansion ratio becomes larger as the vertical angle decreases.Results also showed that the fracture strain at the fracture location on the hole edge was constant and independent of the vertical angle. This is because the hole expansion ratio was controlled not only by the fracture strain, which is independent of the vertical angle, but also by deformation uniformity along the hole edge. From the result of numerical analyses, it was determined that deformation uniformity depends on the gradient of circumferential stress along the radius direction. When the vertical angle is sharp, the circumferential stress showed a steep decline and the deformation localization was suppressed. Consequently, the hole edge deformed more uniformly and the hole expansion ratio became larger. It is concluded that in order to improve stretch flangeability of high strength steel, it is important to uniformly deform the hole edge by applying a conical punch with a sharp vertical angle.展开更多
文摘A commercially pure titanium sheet with titanium carbide (TiC) precipitated in its surface layer was anodized in NH4NO3 aqueous solution and heat treated in air. The photocatalytic activity of titanium dioxide powder collected from the surface of the anodized titanium sheet was evaluated under ultra-violet and visible light irradiation. It showed relatively high photocatalytic activity in 0.1 mol/l potassium iodide solution, which was almost equal to the activity level of TiO2 powder (P-25) manufactured by Degussa Corporation. The better photocatalytic activity under ultra-violet irradiation is considered to be related to the formation of anatase type titanium dioxide. Photocatalytic activity under visible light irradiation was also observed, which was considered to be attributable to impurity doping, (carbon), in the titanium dioxide powder.
文摘A commercially pure titanium sheet precipitated TiC in the surface layer was fabricated by anodic oxidation in NH4NO3 solution and heat treatment in air. The fabricated sheet showed relatively high photocatalytic activity in 0.1 M KI solution, which was close to the activity level of the P-25 particle made by Degussa Corporation. It exhibited photocatalytic activity in antifungal and antivirus tests under black light irradiation. The better photocatalytic activity under black light irradiation is considered to be related to the formation of anatase and rutile type titanium dioxides and rough surface. It also showed photocatalytic activity under visible light irradiation, which is considered to be attributable to carbon and nitrogen doping in titanium dioxide.
文摘Black-colored titanium was obtained by anodic oxidation of a commercially pure grade-1 titanium sheet in a 0.06 M NH4NO3 solution, followed by heat treatment at 773 K for 1 h in a vacuum furnace. The resulting oxide layer on the titanium substrate was examined by X-ray photoelectron spectroscopy, X-ray diffraction, glow discharge spectroscopy, and scanning electron microscopy. It was found that the oxide layer on the black-colored titanium sheet was several micrometers thick and mainly consisted of rutile TiO2 exhibiting a sponge like nanoporous structure. It is considered that the black-colored appearance of the titanium sheet is due to the sponge like nanoporous structure of the oxide layer absorbing the incident light. The photocatalytic activity of the black-colored titanium sheet was examined by observing the decomposition of a methylene blue (MB, C16H18N3SCl) solution under ultraviolet irradiation due to the existence of rutile TiO2. The sheet also exhibited photocatalytic activity under visible light irradiation. It is believed that the photocatalytic response upon irradiation with white light is due to carbon doping of the titanium oxide layer on the titanium substrate.
文摘To clarify the effects of the vertical angle of a conical punch on stretch flangeability, hole expansion forming tests were conducted. Test results showed that the hole expansion ratio becomes larger as the vertical angle decreases.Results also showed that the fracture strain at the fracture location on the hole edge was constant and independent of the vertical angle. This is because the hole expansion ratio was controlled not only by the fracture strain, which is independent of the vertical angle, but also by deformation uniformity along the hole edge. From the result of numerical analyses, it was determined that deformation uniformity depends on the gradient of circumferential stress along the radius direction. When the vertical angle is sharp, the circumferential stress showed a steep decline and the deformation localization was suppressed. Consequently, the hole edge deformed more uniformly and the hole expansion ratio became larger. It is concluded that in order to improve stretch flangeability of high strength steel, it is important to uniformly deform the hole edge by applying a conical punch with a sharp vertical angle.