The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-roc...The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-rock majorand trace-element geochemical analyses of early Mesozoic granitic rocks in the Chifeng area to establish their geochronological framework, petrogenesis, and implications for the tectonic evolution of the eastern Central Asia Orogenic Belt(CAOB). Zircon U-Pb dating results show that these rocks were emplaced in three stages during the Triassic:(1) syenogranites during 250-248 Ma,(2) granodiorites during 244-243 Ma, and(3) monzogranites and granodiorites during 232-230 Ma. These Triassic granitoids belong to the high-K calc-alkaline series and are evolved I-type granites. They have high SiO2 and low Mg O contents with enrichments in light rare-earth elements, Zr, Hf, Rb, Th, and U, and depletions in Ba, Nb, Ta, Sr, and Eu. These geochemical data indicate that the granitoids were derived from partial melting of a lower-crustal source under relatively low-pressure conditions and subsequently underwent extensive fractional crystallization. Considering both the geochemical data and regional geological information, we propose that the 250-248 Ma syenogranites were emplaced in an extensional environment linked to slab break-off after closure of the Paleo-Asian Ocean(PAO) along the Solonker-Xra Moron-Changchun suture zone. The 244-243 Ma granodiorites were formed in a compressional orogenic setting during collision between the Erguna-Xing’an-Songliao composite block and the NCC. The 232-230 Ma granodiorites and monzogranites were emplaced during the transition from compressional orogeny to post-orogenic extension. Overall, the early Mesozoic tectonic evolution of the Chifeng area can be divided into three main stages:(1) closure of the Paleo-Asian Ocean and extension related to slab break-off during the Early Triassic;(2) continuous collisional compression during the Middle Triassic after closure of the PAO;and(3) post-orogenic extension during the Late Triassic, most probably due to lithospheric delamination after amalgamation of the Erguna-Xing’an-Songliao composite block and the NCC.展开更多
Deep-water facies sections have advantages of recording complete information across the Permian-Triassic boundary(PTB). Here we present a detailed study on the conodont biostratigraphy and carbon isotope profile range...Deep-water facies sections have advantages of recording complete information across the Permian-Triassic boundary(PTB). Here we present a detailed study on the conodont biostratigraphy and carbon isotope profile ranges from the Wuchiapingian-Changhsingian boundary(WCB) to the PTB of two deep-water facies sections at Zhuqiao and Shiligou in the Middle Yangtze region, western Hubei, South China. Fifteen species and three genera are identified. Eight conodont zones are recognized which in ascending order are the Clarkina orientalis, C. wangi, C. subcarinata, C. changxingensis, C. yini, C. meishanensis, Hindeodus parvus and Isarcicella isarcica zones. The onset of deposition of the deep-water siliceous strata of Dalong Formation in western Hubei began in the Late Wuchiapingian and persisted to the Late Changhsingian. Carbon isotope negative excursions occur near both the WCB and PTB in both sections. The WCB δ13 Ccarb negative excursion is in the C. orientalis and C. wangi zones. The PTB δ13 Ccarb negative excursion began in the C. yini Zone and extended to the I. isarcica Zone. The absence of several Changhsingian zones may indicate the difficulty of extracting conodonts from siliceous strata or the presence of an intra-Changhsingian hiatus.展开更多
The discoveries of oil and gas reservoirs in the volcanic rocks of the Songliao Basin(SB) have attracted the attention of many researchers. However, the lack of studies on the genesis of the volcanic rocks has led to ...The discoveries of oil and gas reservoirs in the volcanic rocks of the Songliao Basin(SB) have attracted the attention of many researchers. However, the lack of studies on the genesis of the volcanic rocks has led to different opinions being presented for the genesis of the SB. In order to solve this problem, this study selected the volcanic rocks of the Yingcheng Formation in the Southern Songliao Basin(SSB) as the research object, and determined the genesis and tectonic setting of the volcanic rocks by using LA-ICP-MS zircon U-Pb dating and a geochemical analysis method(major elements, trace elements, and Hf isotopes). The volcanic rocks of the Yingcheng Formation are mainly composed of rhyolites with minor dacites and pyroclastic rocks. Our new zircon U-Pb dating results show that these volcanic rocks were erupted in the Early Cretaceous(113–118 Ma). The primary zircons from the rhyolites have εHf(t) values of +4.70 to +12.46 and twostage model age(TDM2) of 876–374 Ma. The geochemical data presented in this study allow these rhyolites to be divided into I-type rhyolites and A-type rhyolites, both of which were formed by the partial melting of the crust. They have SiO2 contents of 71.62 wt.%–75.76 wt.% and Al2 O3 contentsof 10.88 wt.% to 12.92 wt.%. The rhyolites have distinctively higher REE contents than those of ordinary granites, with obvious negative Eu anomalies. The light to heavy REE fractionation is not obvious, and the LaN/YbN(average value = 9.78) is less than 10. The A-type rhyolites depleted in Ba, Sr, P, and Ti, with relatively low Nb/Ta, indicating that the rocks belong A2 subtype granites formed in an extensional environment. The adakitic dacites are characterized by high Sr contents(624 to 1,082 ppm), low Y contents(10.6 to 12.6 ppm), high Sr/Y and Sr/Yb ratios, and low Mg# values(14.77 to 36.46), indicating that they belong to "C" type adakites. The adakitic dacite with high Sr and low Yb were likely generated by partial melting of the lower crust under high pressure conditions at least 40 km depth. The I-type rhyolites with low Sr and high Yb, and the A-type rhyolites with very low Sr and high Yb, were formed in the middle and upper crust under low pressure conditions, respectively. In addition, the formation depths of the former were approximately 30 km, whereas those of the latter were less than 30 km. The geochemical characteristics reveal that the volcanic rocks of Yingcheng Formation were formed in an extensional environment which was related to the retreat of subducted Paleo-Pacific Plate. At the late Early Cretaceous Period, the upwelling of the asthenosphere mantle and the lithosphere delamination caused by the retreat of the subducted Paleo-Pacific Plate, had resulted in lithosheric extension in the eastern part of China. Subsequently, a large area of volcanic rocks had formed. The SB has also been confirmed to be a product of the tectonic stress field in that region.展开更多
Two Permian-Triassic boundary(PTB) sections(Pojue and Dala) are well exposed in an isolated carbonate platform(Napo Platform) on the southwestern margin of the Nanpanjiang Basin, South China. These sections provide an...Two Permian-Triassic boundary(PTB) sections(Pojue and Dala) are well exposed in an isolated carbonate platform(Napo Platform) on the southwestern margin of the Nanpanjiang Basin, South China. These sections provide an insight into the transition across the PTB and a detailed investigation of the conodont biostratigraphy and inorganic carbon isotopes is presented. The PTB at the Pojue Section is placed at the base of Bed 10 B(a dolomitized mudstone found below a microbialite horizon), defined by the first occurrence of Hindeodus parvus. At the Dala Section, four conodont zones occur. They are, in ascending order, the Hindeodus parvus Zone, Isarcicella staeschei Zone, Isarcicella isarcica Zone and Clarkina planata Zone. Comparison with the Pojue Section suggests the PTB at Dala also occurs at the base of dolomitized mudstone below a microbialite horizon, although the first occurrence of Hindeodus parvus is near the top of a microbialite bed: an occurrence that is also seen in other platform sections. The succeeding microbialite beds developed during the ongoing PTB mass extinction phase. This time was characterized by low carbon isotope values, and a microbialite ecosystem that provided a refuge for selected groups(bivalves, ostracods and microgastropods) that were likely tolerant of extremely high temperatures.展开更多
The Liao-Ji belt(LJB)is one of the Paleoproterozoic tectonic belts located in the North China Craton.A large number of Paleoproterozoic meta-volcanic-sedimentary rock and intrusive rocks are preserved in the LJB,which...The Liao-Ji belt(LJB)is one of the Paleoproterozoic tectonic belts located in the North China Craton.A large number of Paleoproterozoic meta-volcanic-sedimentary rock and intrusive rocks are preserved in the LJB,which provide reliable carriers for the study of the Paleoproterozoic tectonic evolution of the North China Craton.The Paleoproterozoic intrusive rock in the LJB can be divided into the following seven types:syenogranite,quartz diorite,porphyry granite,migmatitic granite,sye-nite,metamorphic plutonic rock,and granitic pegmatite and metagabbro(metamorphic diabase).Zir-con U-Pb dating of 15 samples from intrusive rocks was carried out in this study.The chronology framework of the Paleoproterozoic intrusive rock in the LJB was established,and the magmatism of intrusive rocks can be divided into three stages:2200 to 2110,2010 to 1937,1900 to 1820 Ma.The chronological framework supported the evolution model of subduction accretionary arc-continent colli-sion in the LJB effectively.Combined with previous geochemical work,it was a passive continental margin environment at approximately 2200 Ma,and then transformed into and active continental margin.The bimodal intrusive rocks between 2180 and 2150 Ma indicated a back-arc tension envi-ronment which lasted until approximately 2110 Ma with a large number of basic intrusive rocks.And then the back-arc basin began to contract and the magmatic activities were reduced,with only a small number of intrusive rock activities occurring at approximately 2040,2010 and 1937 Ma.After the orogenic activities,there was a post-orogenic extension stage from 1900 to 1820 Ma.Magmatic activi-ties caused by the environmental extension started to occur more frequently and subsequently resulted in the large-scale intrusive rocks in eastern Liaoning.展开更多
基金financially supported by the National Key Research and Development Program (Grant Nos. 2018YFC0603804)the China Geological Survey (Grants DD20190042, DD20190039 and DD20160048-05)
文摘The early Mesozoic marked an important transition from collisional orogeny to post-orogenic extension at the northern margin of the North China Craton(NCC). In this study, we undertook zircon U-Pb dating and whole-rock majorand trace-element geochemical analyses of early Mesozoic granitic rocks in the Chifeng area to establish their geochronological framework, petrogenesis, and implications for the tectonic evolution of the eastern Central Asia Orogenic Belt(CAOB). Zircon U-Pb dating results show that these rocks were emplaced in three stages during the Triassic:(1) syenogranites during 250-248 Ma,(2) granodiorites during 244-243 Ma, and(3) monzogranites and granodiorites during 232-230 Ma. These Triassic granitoids belong to the high-K calc-alkaline series and are evolved I-type granites. They have high SiO2 and low Mg O contents with enrichments in light rare-earth elements, Zr, Hf, Rb, Th, and U, and depletions in Ba, Nb, Ta, Sr, and Eu. These geochemical data indicate that the granitoids were derived from partial melting of a lower-crustal source under relatively low-pressure conditions and subsequently underwent extensive fractional crystallization. Considering both the geochemical data and regional geological information, we propose that the 250-248 Ma syenogranites were emplaced in an extensional environment linked to slab break-off after closure of the Paleo-Asian Ocean(PAO) along the Solonker-Xra Moron-Changchun suture zone. The 244-243 Ma granodiorites were formed in a compressional orogenic setting during collision between the Erguna-Xing’an-Songliao composite block and the NCC. The 232-230 Ma granodiorites and monzogranites were emplaced during the transition from compressional orogeny to post-orogenic extension. Overall, the early Mesozoic tectonic evolution of the Chifeng area can be divided into three main stages:(1) closure of the Paleo-Asian Ocean and extension related to slab break-off during the Early Triassic;(2) continuous collisional compression during the Middle Triassic after closure of the PAO;and(3) post-orogenic extension during the Late Triassic, most probably due to lithospheric delamination after amalgamation of the Erguna-Xing’an-Songliao composite block and the NCC.
基金supported by the Natural Science Foundation of China(Nos.41572002,41830320,41272044,41472087,4183000426,41802016)
文摘Deep-water facies sections have advantages of recording complete information across the Permian-Triassic boundary(PTB). Here we present a detailed study on the conodont biostratigraphy and carbon isotope profile ranges from the Wuchiapingian-Changhsingian boundary(WCB) to the PTB of two deep-water facies sections at Zhuqiao and Shiligou in the Middle Yangtze region, western Hubei, South China. Fifteen species and three genera are identified. Eight conodont zones are recognized which in ascending order are the Clarkina orientalis, C. wangi, C. subcarinata, C. changxingensis, C. yini, C. meishanensis, Hindeodus parvus and Isarcicella isarcica zones. The onset of deposition of the deep-water siliceous strata of Dalong Formation in western Hubei began in the Late Wuchiapingian and persisted to the Late Changhsingian. Carbon isotope negative excursions occur near both the WCB and PTB in both sections. The WCB δ13 Ccarb negative excursion is in the C. orientalis and C. wangi zones. The PTB δ13 Ccarb negative excursion began in the C. yini Zone and extended to the I. isarcica Zone. The absence of several Changhsingian zones may indicate the difficulty of extracting conodonts from siliceous strata or the presence of an intra-Changhsingian hiatus.
基金financially supported by the National Key Research and Development Program(Grant No.2018YFC0603804)the China Geological Survey(Grant Nos.DD20190042 and DD20190039)。
文摘The discoveries of oil and gas reservoirs in the volcanic rocks of the Songliao Basin(SB) have attracted the attention of many researchers. However, the lack of studies on the genesis of the volcanic rocks has led to different opinions being presented for the genesis of the SB. In order to solve this problem, this study selected the volcanic rocks of the Yingcheng Formation in the Southern Songliao Basin(SSB) as the research object, and determined the genesis and tectonic setting of the volcanic rocks by using LA-ICP-MS zircon U-Pb dating and a geochemical analysis method(major elements, trace elements, and Hf isotopes). The volcanic rocks of the Yingcheng Formation are mainly composed of rhyolites with minor dacites and pyroclastic rocks. Our new zircon U-Pb dating results show that these volcanic rocks were erupted in the Early Cretaceous(113–118 Ma). The primary zircons from the rhyolites have εHf(t) values of +4.70 to +12.46 and twostage model age(TDM2) of 876–374 Ma. The geochemical data presented in this study allow these rhyolites to be divided into I-type rhyolites and A-type rhyolites, both of which were formed by the partial melting of the crust. They have SiO2 contents of 71.62 wt.%–75.76 wt.% and Al2 O3 contentsof 10.88 wt.% to 12.92 wt.%. The rhyolites have distinctively higher REE contents than those of ordinary granites, with obvious negative Eu anomalies. The light to heavy REE fractionation is not obvious, and the LaN/YbN(average value = 9.78) is less than 10. The A-type rhyolites depleted in Ba, Sr, P, and Ti, with relatively low Nb/Ta, indicating that the rocks belong A2 subtype granites formed in an extensional environment. The adakitic dacites are characterized by high Sr contents(624 to 1,082 ppm), low Y contents(10.6 to 12.6 ppm), high Sr/Y and Sr/Yb ratios, and low Mg# values(14.77 to 36.46), indicating that they belong to "C" type adakites. The adakitic dacite with high Sr and low Yb were likely generated by partial melting of the lower crust under high pressure conditions at least 40 km depth. The I-type rhyolites with low Sr and high Yb, and the A-type rhyolites with very low Sr and high Yb, were formed in the middle and upper crust under low pressure conditions, respectively. In addition, the formation depths of the former were approximately 30 km, whereas those of the latter were less than 30 km. The geochemical characteristics reveal that the volcanic rocks of Yingcheng Formation were formed in an extensional environment which was related to the retreat of subducted Paleo-Pacific Plate. At the late Early Cretaceous Period, the upwelling of the asthenosphere mantle and the lithosphere delamination caused by the retreat of the subducted Paleo-Pacific Plate, had resulted in lithosheric extension in the eastern part of China. Subsequently, a large area of volcanic rocks had formed. The SB has also been confirmed to be a product of the tectonic stress field in that region.
基金supported by the National Natural Science Foundation of China (No. 41572324)the Special Project on Basic Work of Science and Technology from the National Ministry of Science and Technology of China (No. 2015FY310100-11)the China Geological Survey (No. DD20160120-04)
文摘Two Permian-Triassic boundary(PTB) sections(Pojue and Dala) are well exposed in an isolated carbonate platform(Napo Platform) on the southwestern margin of the Nanpanjiang Basin, South China. These sections provide an insight into the transition across the PTB and a detailed investigation of the conodont biostratigraphy and inorganic carbon isotopes is presented. The PTB at the Pojue Section is placed at the base of Bed 10 B(a dolomitized mudstone found below a microbialite horizon), defined by the first occurrence of Hindeodus parvus. At the Dala Section, four conodont zones occur. They are, in ascending order, the Hindeodus parvus Zone, Isarcicella staeschei Zone, Isarcicella isarcica Zone and Clarkina planata Zone. Comparison with the Pojue Section suggests the PTB at Dala also occurs at the base of dolomitized mudstone below a microbialite horizon, although the first occurrence of Hindeodus parvus is near the top of a microbialite bed: an occurrence that is also seen in other platform sections. The succeeding microbialite beds developed during the ongoing PTB mass extinction phase. This time was characterized by low carbon isotope values, and a microbialite ecosystem that provided a refuge for selected groups(bivalves, ostracods and microgastropods) that were likely tolerant of extremely high temperatures.
基金This study was financially supported by the National Key Research and Development Program(No.2018YFC0603804)the China Geological Survey(Nos.DD20190042,DD20190039 and DD20160048-05).
文摘The Liao-Ji belt(LJB)is one of the Paleoproterozoic tectonic belts located in the North China Craton.A large number of Paleoproterozoic meta-volcanic-sedimentary rock and intrusive rocks are preserved in the LJB,which provide reliable carriers for the study of the Paleoproterozoic tectonic evolution of the North China Craton.The Paleoproterozoic intrusive rock in the LJB can be divided into the following seven types:syenogranite,quartz diorite,porphyry granite,migmatitic granite,sye-nite,metamorphic plutonic rock,and granitic pegmatite and metagabbro(metamorphic diabase).Zir-con U-Pb dating of 15 samples from intrusive rocks was carried out in this study.The chronology framework of the Paleoproterozoic intrusive rock in the LJB was established,and the magmatism of intrusive rocks can be divided into three stages:2200 to 2110,2010 to 1937,1900 to 1820 Ma.The chronological framework supported the evolution model of subduction accretionary arc-continent colli-sion in the LJB effectively.Combined with previous geochemical work,it was a passive continental margin environment at approximately 2200 Ma,and then transformed into and active continental margin.The bimodal intrusive rocks between 2180 and 2150 Ma indicated a back-arc tension envi-ronment which lasted until approximately 2110 Ma with a large number of basic intrusive rocks.And then the back-arc basin began to contract and the magmatic activities were reduced,with only a small number of intrusive rock activities occurring at approximately 2040,2010 and 1937 Ma.After the orogenic activities,there was a post-orogenic extension stage from 1900 to 1820 Ma.Magmatic activi-ties caused by the environmental extension started to occur more frequently and subsequently resulted in the large-scale intrusive rocks in eastern Liaoning.