The effects of the addition of Mo on the densification mechanism, microstructure evolution and mechanical strength of blended elemental powder metallurgy Ti-Mo alloy were investigated in this work. The results show th...The effects of the addition of Mo on the densification mechanism, microstructure evolution and mechanical strength of blended elemental powder metallurgy Ti-Mo alloy were investigated in this work. The results show that the addition of Mo hinders the densification of Ti-Mo alloy due to the low diffusion rate of Mo atoms in β-Ti matrix, and the increase of Mo content worsens the sinterability of Ti-Mo alloy. However, the addition of Mo can also refine the microstructure of Ti-Mo alloy greatly, and raising sintering temperature can effectively increase the alloy density without grain coarsening. When neglecting the relative density factor, the addition of Mo refines the microstructure, and improves the mechanical strength by Hall-Petch relationship.展开更多
文摘The effects of the addition of Mo on the densification mechanism, microstructure evolution and mechanical strength of blended elemental powder metallurgy Ti-Mo alloy were investigated in this work. The results show that the addition of Mo hinders the densification of Ti-Mo alloy due to the low diffusion rate of Mo atoms in β-Ti matrix, and the increase of Mo content worsens the sinterability of Ti-Mo alloy. However, the addition of Mo can also refine the microstructure of Ti-Mo alloy greatly, and raising sintering temperature can effectively increase the alloy density without grain coarsening. When neglecting the relative density factor, the addition of Mo refines the microstructure, and improves the mechanical strength by Hall-Petch relationship.