Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we ...Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.展开更多
Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when deal...Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when dealing with color fundus images due to issues like non-uniformillumination,low contrast,and variations in vessel appearance,especially in the presence of different pathologies.Furthermore,the speed of the retinal vessel segmentation system is of utmost importance.With the surge of now available big data,the speed of the algorithm becomes increasingly important,carrying almost equivalent weightage to the accuracy of the algorithm.To address these challenges,we present a novel approach for retinal vessel segmentation,leveraging efficient and robust techniques based on multiscale line detection and mathematical morphology.Our algorithm’s performance is evaluated on two publicly available datasets,namely the Digital Retinal Images for Vessel Extraction dataset(DRIVE)and the Structure Analysis of Retina(STARE)dataset.The experimental results demonstrate the effectiveness of our method,withmean accuracy values of 0.9467 forDRIVE and 0.9535 for STARE datasets,aswell as sensitivity values of 0.6952 forDRIVE and 0.6809 for STARE datasets.Notably,our algorithmexhibits competitive performance with state-of-the-art methods.Importantly,it operates at an average speed of 3.73 s per image for DRIVE and 3.75 s for STARE datasets.It is worth noting that these results were achieved using Matlab scripts containing multiple loops.This suggests that the processing time can be further reduced by replacing loops with vectorization.Thus the proposed algorithm can be deployed in real time applications.In summary,our proposed system strikes a fine balance between swift computation and accuracy that is on par with the best available methods in the field.展开更多
Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For...Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.展开更多
As the persistent concerns regarding sluggish reaction kinetics and insufficient conductivities of sulfur cathodes in all-solid-state Li-S batteries(ASSLSBs),numerous carbon additives and solid-state electrolytes(SSEs...As the persistent concerns regarding sluggish reaction kinetics and insufficient conductivities of sulfur cathodes in all-solid-state Li-S batteries(ASSLSBs),numerous carbon additives and solid-state electrolytes(SSEs)have been incorporated into the cathode to facilitate ion/electron pathways around sulfur.However,this has resulted in a reduced capacity and decomposition of SSEs.Therefore,it is worth exploring neotype sulfur hosts with electronic/ionic conductivity in the cathode.Herein,we present a hybrid cathode composed of few-layered S/MoS_(2)/C nanosheets(<5 layers)that exhibits high-loading and long-life performance without the need of additional carbon additives in advanced ASSLSBs.The multifunctional MoS_(2)/C host exposes the abundant surface for intimate contacting sites,in situ-formed LixMoS_(2)during discharging as mixed ion/electron conductive network improves the S/Li2S conversion,and contributes extra capacity for the part of active materials.With a high active material content(S+MoS_(2)/C)of 60 wt%in the S/MoS_(2)/C/Li_(6)PS_(5)Cl cathode composite(the carbon content is only~3.97 wt%),the S/MoS_(2)/C electrode delivers excellent electrochemical performance,with a high reversible discharge capacity of 980.3 mAh g^(-1)(588.2 mAh g^(-1)based on the whole cathode weight)after 100 cycles at 100 mA g^(-1).The stable cycling performance is observed over 3500 cycles with a Coulombic efficiency of 98.5%at 600 mA g^(-1),while a high areal capacity of 10.4 mAh cm^(-2)is achieved with active material loading of 12.8 mg cm^(-2).展开更多
As hydropower development expands across lowland tropical forests,flooding and concomitant insular fragmentation have become important threats to biodiversity.Newly created insular landscapes serve as natural laborato...As hydropower development expands across lowland tropical forests,flooding and concomitant insular fragmentation have become important threats to biodiversity.Newly created insular landscapes serve as natural laboratories to investigate biodiversity responses to fragmentation.One of these most iconic landscapes is the Balbina Hydroelectric Reservoir in Brazilian Amazonia,occupying>400000 ha and comprising>3500 forest islands.Here,we synthesise the current knowledge on responses of a wide range of biological groups to insular fragmentation at Balbina.Sampling has largely concentrated on a set of 22 islands and three mainland sites.In total,39 studies were conducted over nearly two decades,covering 17 vertebrate,invertebrate,and plant taxa.Although species responses varied according to taxonomic group,island area was consistently included and played a pivotal role in 66.7%of all studies examining patterns of species diversity.Species persistence was further affected by species traits,mostly related to species capacity to use/traverse the aquatic matrix or tolerate habitat degradation,as noted for species of vertebrates and orchid bees.Further research is needed to improve our understanding of such effects on wider ecosystem functioning.Environmental Impact Assessments must account for changes in both the remaining habitat amount and configuration,and subsequent long-term species losses.展开更多
Hydropower development has become an important driver of habitat loss and fragmentation across lowland tropical forests.Despite ample evidence on the detrimental effects of insular habitat fragmentation on biodiversit...Hydropower development has become an important driver of habitat loss and fragmentation across lowland tropical forests.Despite ample evidence on the detrimental effects of insular habitat fragmentation on biodiversity,invertebrate taxa,that may be critical to ecosystem functioning,have been overlooked.We assessed the assemblage-level responses of social wasps to forest insularization induced by the Balbina Hydroelectric Dam in Central Brazilian Amazonia.Employing Malaise trapping,we captured wasps on 27 forest islands and three continuous forests.We constructed Generalized Linear Models and employed a model selection approach to examine the impact of local variables(fire severity(FIRE)and basal area of pioneer tree species(PIONEER))and landscape-scale variables(amount of habitat(COVER))on patterns of species richness,composition,and body size of wasps.A total of 374 individuals(29 species)were collected across all sampling sites.COVER was the main predictor of species richness,while PIONEER was the only variable that explained variation in community composition,with a negative effect on body size.Our results add evidence to the pervasive impacts of large hydroelectric dams on tropical forest biodiversity,and suggest that social wasps,among other invertebrates,can be used as bioindicators in infrastructure development projects.展开更多
[目的]文献计量方法可以用于反映和预测科学技术发展的历史和趋势。本文基于科学大数据的计量方法探讨植物表型组学的研究现状,为植物表型组学的发展提供参考。[方法]基于Scopus数据库,分析2013年—2018年9月数据库中植物表型组学及其...[目的]文献计量方法可以用于反映和预测科学技术发展的历史和趋势。本文基于科学大数据的计量方法探讨植物表型组学的研究现状,为植物表型组学的发展提供参考。[方法]基于Scopus数据库,分析2013年—2018年9月数据库中植物表型组学及其相关学术产出的文献数量、引用次数、合作单位、研究方向、学术机构和科研团队等信息,利用Sci Val和Cite Space 5.0等统计分析工具,运用可视化数据方法,分析植物表型组学研究领域的发展特点和趋势。[结果]基于Scopus共检索到与植物表型组学研究和应用相关的文献共20 953篇,总被引数217 105,TOP1%高被引论文为2.0%。相关学术产出总被引量TOP10的国家是美国、中国、德国、英国、法国、日本、澳大利亚、西班牙、加拿大和荷兰。相关论文被引总量TOP10的机构分别是中国科学院、法国国家农业研究院、美国农业部、法国国家科学研究院、中国农业科学院、美国康奈尔大学、西班牙高等科学研究委员会、美国加州大学戴维斯分校、法国巴黎萨克莱大学、荷兰瓦赫宁根大学。学术产出最多的学者是德国克斯·普朗克分子植物生理研究所的Alisdair Robert Fernie,共发表58篇植物细胞表型论文,被引1 246次。目前植物表型组学研究的植物种类较少,主要包括拟南芥、水稻、小麦、玉米、番茄和大豆。[结论]作为一个新兴的研究方向,植物表型组学体现出作物栽培、育种、生物学与计算机科学等多学科交叉发展的特性。高通量图像及相关数据分析是现阶段植物表型组学的重要研究方向,主题显著度指数达到98.8%,受关注度极高。展开更多
中国覆盖比较完整的台站观测始于1951年,1951年之前虽然有一些观测记录,但是残缺不全。所以要建立更长的气候序列就要吸收代用资料,但是代用资料可能与气候要素仅有一定程度的相关,不可能一一对应,因此应用代用资料重建的气候序列...中国覆盖比较完整的台站观测始于1951年,1951年之前虽然有一些观测记录,但是残缺不全。所以要建立更长的气候序列就要吸收代用资料,但是代用资料可能与气候要素仅有一定程度的相关,不可能一一对应,因此应用代用资料重建的气候序列有一定的不确定性。英国East Anglia大学的Climatic Research Unit(简称CRU)通过整合已有的若干个知名数据库,重建了一套覆盖完整、高分辨率、且无缺测的月平均地表气候要素数据集,时间范围覆盖1901-2003年,空间为0.5°×0.5°经纬网格覆盖所有陆地。这套资料和中国已有的气候数据相比具有如下优点:第一,中国西部20世纪前半期非常缺少观测,CRU资料尽管包含插值带来的误差,经比较仍可作为有一定信度的参考;第二,中国现有的百年温度序列只是年或季分辨率,而CRU资料达到月分辨率;第三,建立这个序列仅使用观测结果,做统计内插,不包括代用资料所带来的不确定性。因此,CRU的序列与用代用资料补充得到的序列在资料方面有较大不同,比较这两个序列,不仅可以进一步确认中国气候变化的特征,也可以彼此校正。结果表明:(1)CRU资料反映的全国年平均温度年际变化和考虑代用资料重建的序列吻合得很好,相关系数达到0.84;(2)区域尺度上,两者在10个典型分区的气温变率也相当一致,相关整体保持在0.8左右,仅新疆西南部和西藏西北部两者差异较大;(3)CRU资料揭示的中国年总降水量在1951~2000年的变化与160站观测吻合,相关系数达到0.93;(4)CRU资料的中国东部四季降水量和重建资料十分一致,秋季一致性最好,相关0.93;(5)CRU资料和重建的序列比较一致地表现出中国温度和降水年代际变化的主要特征,其给出的20世纪20年代中国大旱和20世纪40年代中国高温的空间分布与作者过去的结论相一致。这表明,作者过去重建的中国气候序列有比较大的可靠性,而CRU资料也提供了新的信息,特别是在20世纪前半期和中国西部。展开更多
基金supported by grants from the Major Program of National Agricultural Science and Technology of China(NK20220607)the National Natural Science Foundation of China(32272059 and 31971883)the Science and Technology Department of Sichuan Province(2021YFYZ0002,2022ZDZX0014,and 2023NSFSC1995)。
文摘Stripe rust,caused by Puccinia striiformis f.sp.tritici(Pst),is a devastating disease in wheat worldwide.Discovering and characterizing new resistance genes/QTL is crucial for wheat breeding programs.In this study,we fine-mapped and characterized a stripe rust resistance gene,YRAYH,on chromosome arm 5BL in the Chinese wheat landrace Anyuehong(AYH).Evaluations of stripe rust response to prevalent Chinese Pst races in near-isogenic lines derived from a cross of Anyuehong and Taichung 29 showed that YrAYH conferred a high level of resistance at all growth stages.Fine mapping using a large segregating population of 9748 plants,narrowed the YRAYH locus to a 3.7 Mb interval on chromosome arm 5BL that included 61 annotated genes.Transcriptome analysis of two NIL pairs identified 64 upregulated differentially expressed genes(DEGs)in the resistant NILs(NILs-R).Annotations indicated that many of these genes have roles in plant disease resistance pathways.Through a combined approach of fine-mapping and transcriptome sequencing,we identified a serine/threonine-protein kinase SRPK as a candidate gene underlying YrAYH.A unique 25 bp insertion was identified in the NILs-R compared to the NILs-S and previously published wheat genomes.An InDel marker was developed and co-segregated with YrAYH.Agronomic trait evaluation of the NILs suggested that YrAYH not only reduces the impact of stripe rust but was also associated with a gene that increases plant height and spike length.
文摘Diagnosing various diseases such as glaucoma,age-related macular degeneration,cardiovascular conditions,and diabetic retinopathy involves segmenting retinal blood vessels.The task is particularly challenging when dealing with color fundus images due to issues like non-uniformillumination,low contrast,and variations in vessel appearance,especially in the presence of different pathologies.Furthermore,the speed of the retinal vessel segmentation system is of utmost importance.With the surge of now available big data,the speed of the algorithm becomes increasingly important,carrying almost equivalent weightage to the accuracy of the algorithm.To address these challenges,we present a novel approach for retinal vessel segmentation,leveraging efficient and robust techniques based on multiscale line detection and mathematical morphology.Our algorithm’s performance is evaluated on two publicly available datasets,namely the Digital Retinal Images for Vessel Extraction dataset(DRIVE)and the Structure Analysis of Retina(STARE)dataset.The experimental results demonstrate the effectiveness of our method,withmean accuracy values of 0.9467 forDRIVE and 0.9535 for STARE datasets,aswell as sensitivity values of 0.6952 forDRIVE and 0.6809 for STARE datasets.Notably,our algorithmexhibits competitive performance with state-of-the-art methods.Importantly,it operates at an average speed of 3.73 s per image for DRIVE and 3.75 s for STARE datasets.It is worth noting that these results were achieved using Matlab scripts containing multiple loops.This suggests that the processing time can be further reduced by replacing loops with vectorization.Thus the proposed algorithm can be deployed in real time applications.In summary,our proposed system strikes a fine balance between swift computation and accuracy that is on par with the best available methods in the field.
基金supported by the Natural Science Foundation under Grant No.61962009Major Scientific and Technological Special Project of Guizhou Province under Grant No.20183001Foundation of Guizhou Provincial Key Laboratory of Public Big Data under Grant No.2018BDKFJJ003,2018BDKFJJ005 and 2019BDKFJJ009.
文摘Wireless Sensor Network(WSN)is a distributed sensor network composed a large number of nodes with low cost,low performance and self-management.The special structure of WSN brings both convenience and vulnerability.For example,a malicious participant can launch attacks by capturing a physical device.Therefore,node authentication that can resist malicious attacks is very important to network security.Recently,blockchain technology has shown the potential to enhance the security of the Internet of Things(IoT).In this paper,we propose a Blockchain-empowered Authentication Scheme(BAS)for WSN.In our scheme,all nodes are managed by utilizing the identity information stored on the blockchain.Besides,the simulation experiment about worm detection is executed on BAS,and the security is evaluated from detection and infection rate.The experiment results indicate that the proposed scheme can effectively inhibit the spread and infection of worms in the network.
基金the financial support from the National Natural Science Foundation of China(T2241003)the National Key Research and Development Program of China(2022YFB4003500)the Key R&D project of Hubei Province,China(2021AAA006)
文摘As the persistent concerns regarding sluggish reaction kinetics and insufficient conductivities of sulfur cathodes in all-solid-state Li-S batteries(ASSLSBs),numerous carbon additives and solid-state electrolytes(SSEs)have been incorporated into the cathode to facilitate ion/electron pathways around sulfur.However,this has resulted in a reduced capacity and decomposition of SSEs.Therefore,it is worth exploring neotype sulfur hosts with electronic/ionic conductivity in the cathode.Herein,we present a hybrid cathode composed of few-layered S/MoS_(2)/C nanosheets(<5 layers)that exhibits high-loading and long-life performance without the need of additional carbon additives in advanced ASSLSBs.The multifunctional MoS_(2)/C host exposes the abundant surface for intimate contacting sites,in situ-formed LixMoS_(2)during discharging as mixed ion/electron conductive network improves the S/Li2S conversion,and contributes extra capacity for the part of active materials.With a high active material content(S+MoS_(2)/C)of 60 wt%in the S/MoS_(2)/C/Li_(6)PS_(5)Cl cathode composite(the carbon content is only~3.97 wt%),the S/MoS_(2)/C electrode delivers excellent electrochemical performance,with a high reversible discharge capacity of 980.3 mAh g^(-1)(588.2 mAh g^(-1)based on the whole cathode weight)after 100 cycles at 100 mA g^(-1).The stable cycling performance is observed over 3500 cycles with a Coulombic efficiency of 98.5%at 600 mA g^(-1),while a high areal capacity of 10.4 mAh cm^(-2)is achieved with active material loading of 12.8 mg cm^(-2).
基金supported byÁreas Protegidas da Amazônia(ARPA)Amazonas Distribuidora de Energia S.A.,and Associação Comunidade Waimiri Atroari+4 种基金Rufford Foundation(grant number 13675-1)the Conservation Food and Health Foundation,and Idea WildNational Geographic Society grant(NGS-93497C-22)awarded to CAP.I.J is funded through a UKRI Future Leaders Fellowship(MR/T019018/1)M.B received a productivity grant from CNPq(304189/2022-7)European Union’s Horizon 2020 research and innovation programme under the grant agreement No.854248(TROPIBIO)。
文摘As hydropower development expands across lowland tropical forests,flooding and concomitant insular fragmentation have become important threats to biodiversity.Newly created insular landscapes serve as natural laboratories to investigate biodiversity responses to fragmentation.One of these most iconic landscapes is the Balbina Hydroelectric Reservoir in Brazilian Amazonia,occupying>400000 ha and comprising>3500 forest islands.Here,we synthesise the current knowledge on responses of a wide range of biological groups to insular fragmentation at Balbina.Sampling has largely concentrated on a set of 22 islands and three mainland sites.In total,39 studies were conducted over nearly two decades,covering 17 vertebrate,invertebrate,and plant taxa.Although species responses varied according to taxonomic group,island area was consistently included and played a pivotal role in 66.7%of all studies examining patterns of species diversity.Species persistence was further affected by species traits,mostly related to species capacity to use/traverse the aquatic matrix or tolerate habitat degradation,as noted for species of vertebrates and orchid bees.Further research is needed to improve our understanding of such effects on wider ecosystem functioning.Environmental Impact Assessments must account for changes in both the remaining habitat amount and configuration,and subsequent long-term species losses.
基金supported by a NERC grant to C.A.P.(NE/J01401X/1)a Science Without Borders postdoctoral fellowship awarded to D.S.(CNPq grant 246975/2012-1)+1 种基金M.B.received a productivity grant from CNPq(304189/2022-7)supported by the inaugural Frontiers Planet Prize。
文摘Hydropower development has become an important driver of habitat loss and fragmentation across lowland tropical forests.Despite ample evidence on the detrimental effects of insular habitat fragmentation on biodiversity,invertebrate taxa,that may be critical to ecosystem functioning,have been overlooked.We assessed the assemblage-level responses of social wasps to forest insularization induced by the Balbina Hydroelectric Dam in Central Brazilian Amazonia.Employing Malaise trapping,we captured wasps on 27 forest islands and three continuous forests.We constructed Generalized Linear Models and employed a model selection approach to examine the impact of local variables(fire severity(FIRE)and basal area of pioneer tree species(PIONEER))and landscape-scale variables(amount of habitat(COVER))on patterns of species richness,composition,and body size of wasps.A total of 374 individuals(29 species)were collected across all sampling sites.COVER was the main predictor of species richness,while PIONEER was the only variable that explained variation in community composition,with a negative effect on body size.Our results add evidence to the pervasive impacts of large hydroelectric dams on tropical forest biodiversity,and suggest that social wasps,among other invertebrates,can be used as bioindicators in infrastructure development projects.
文摘[目的]文献计量方法可以用于反映和预测科学技术发展的历史和趋势。本文基于科学大数据的计量方法探讨植物表型组学的研究现状,为植物表型组学的发展提供参考。[方法]基于Scopus数据库,分析2013年—2018年9月数据库中植物表型组学及其相关学术产出的文献数量、引用次数、合作单位、研究方向、学术机构和科研团队等信息,利用Sci Val和Cite Space 5.0等统计分析工具,运用可视化数据方法,分析植物表型组学研究领域的发展特点和趋势。[结果]基于Scopus共检索到与植物表型组学研究和应用相关的文献共20 953篇,总被引数217 105,TOP1%高被引论文为2.0%。相关学术产出总被引量TOP10的国家是美国、中国、德国、英国、法国、日本、澳大利亚、西班牙、加拿大和荷兰。相关论文被引总量TOP10的机构分别是中国科学院、法国国家农业研究院、美国农业部、法国国家科学研究院、中国农业科学院、美国康奈尔大学、西班牙高等科学研究委员会、美国加州大学戴维斯分校、法国巴黎萨克莱大学、荷兰瓦赫宁根大学。学术产出最多的学者是德国克斯·普朗克分子植物生理研究所的Alisdair Robert Fernie,共发表58篇植物细胞表型论文,被引1 246次。目前植物表型组学研究的植物种类较少,主要包括拟南芥、水稻、小麦、玉米、番茄和大豆。[结论]作为一个新兴的研究方向,植物表型组学体现出作物栽培、育种、生物学与计算机科学等多学科交叉发展的特性。高通量图像及相关数据分析是现阶段植物表型组学的重要研究方向,主题显著度指数达到98.8%,受关注度极高。
文摘中国覆盖比较完整的台站观测始于1951年,1951年之前虽然有一些观测记录,但是残缺不全。所以要建立更长的气候序列就要吸收代用资料,但是代用资料可能与气候要素仅有一定程度的相关,不可能一一对应,因此应用代用资料重建的气候序列有一定的不确定性。英国East Anglia大学的Climatic Research Unit(简称CRU)通过整合已有的若干个知名数据库,重建了一套覆盖完整、高分辨率、且无缺测的月平均地表气候要素数据集,时间范围覆盖1901-2003年,空间为0.5°×0.5°经纬网格覆盖所有陆地。这套资料和中国已有的气候数据相比具有如下优点:第一,中国西部20世纪前半期非常缺少观测,CRU资料尽管包含插值带来的误差,经比较仍可作为有一定信度的参考;第二,中国现有的百年温度序列只是年或季分辨率,而CRU资料达到月分辨率;第三,建立这个序列仅使用观测结果,做统计内插,不包括代用资料所带来的不确定性。因此,CRU的序列与用代用资料补充得到的序列在资料方面有较大不同,比较这两个序列,不仅可以进一步确认中国气候变化的特征,也可以彼此校正。结果表明:(1)CRU资料反映的全国年平均温度年际变化和考虑代用资料重建的序列吻合得很好,相关系数达到0.84;(2)区域尺度上,两者在10个典型分区的气温变率也相当一致,相关整体保持在0.8左右,仅新疆西南部和西藏西北部两者差异较大;(3)CRU资料揭示的中国年总降水量在1951~2000年的变化与160站观测吻合,相关系数达到0.93;(4)CRU资料的中国东部四季降水量和重建资料十分一致,秋季一致性最好,相关0.93;(5)CRU资料和重建的序列比较一致地表现出中国温度和降水年代际变化的主要特征,其给出的20世纪20年代中国大旱和20世纪40年代中国高温的空间分布与作者过去的结论相一致。这表明,作者过去重建的中国气候序列有比较大的可靠性,而CRU资料也提供了新的信息,特别是在20世纪前半期和中国西部。