Heavy rain falling on land at the upper reaches of the Kelantan River, Malaysia, on December 2014, had resulted in severe soil erosion and untold damages to croplands. The lower reaches of the river were heavily silte...Heavy rain falling on land at the upper reaches of the Kelantan River, Malaysia, on December 2014, had resulted in severe soil erosion and untold damages to croplands. The lower reaches of the river were heavily silted with infertile materials considered unfit for crop production. A study was conducted to explain why the flood phenomenon occurred, to determine the physico-chemical properties of the sediments silted in the Kelantan Plains and to propose measures for soil mitigation. Results showed that the silted sediments were characterized by the presence of quarts, mica, feldspars, kaolinite, gibbsite and hematite believed to come from the top- and subsoil of the upland areas. The sediments’ pH was very low and Al and/or Fe contents were very high, while nitrogen and carbon contents varied from area to area. Soils in the Kelantan Plains badly affected by this great flood needed to undergo proper ameliorative program. The most appropriate measure would be to apply ground magnesium limestone in combination with bio-fertilizer fortified with beneficial microbes that would increase their pH to a level above 5, which consequently eliminates Al<sup>3+</sup> and/or Fe<sup>2+</sup> that causes toxicity to the crops growing on them. The organic material so added would enhance the formation of soil structures. It is advised that the farming communities in the upper reaches of the Kelantan River would have to follow the advice advocated by the Department of Agriculture, Peninsular Malaysia, via MyGAP initiative, in order to sustain agricultural production on their land.展开更多
Drought is one of the hot topics needing urgent attention in the current era of climate change.It massively disturbs the rice growth and productivity and is becoming a serious threat.The drought avoidance strategies i...Drought is one of the hot topics needing urgent attention in the current era of climate change.It massively disturbs the rice growth and productivity and is becoming a serious threat.The drought avoidance strategies in rice include stomatal closure,cellular adaptation and changes in root development.Moreover,the endogenous plant hormones(abscisic acid and jasmonic acid)and reactive oxygen species have paramount importance in drought tolerance in rice.The drought tolerance induces modification in biochemical,molecular and physiological properties of plants.At the molecular level,expression of several transcription-factors is modulated which further determine the activation of drought responsive gene families.Mitogen activated protein kinases and Ca signaling pathways initiate an array of signaling cascade for mediating the gene expression in rice.Approaches,conventional breeding methods combined with modern emerging techniques such as genetic engineering,to improve rice drought tolerance were discussed.This review provided recent insights into major regulatory factors against drought stress,signaling mechanisms and molecular engineering strategies(including conventional transgenic and recent genome editing approaches)to induce drought tolerance in rice.展开更多
The phytotoxicity and antioxidative adaptations of lead (Pb) accumulating ecotype (AE) and non-accumulating ecotype (NAE) of Sedum alfredii Hance were investigated under different Pb treatments involving 0, 0.02...The phytotoxicity and antioxidative adaptations of lead (Pb) accumulating ecotype (AE) and non-accumulating ecotype (NAE) of Sedum alfredii Hance were investigated under different Pb treatments involving 0, 0.02 mmol/L Pb, 0.1 mmol/L Pb and 0.1 mmol/L Pb/0.1 mmol/L ethylenediaminetetraacetic acid (EDTA) for 6days. With the increasing Pb level, the Pb concentration in the shoots of AE plants enhanced accordingly, and EDTA supply helped 51% of Pb translocation to shoots of AE compared with those treated with 0.1 mmol/L Pb alone. Moreover, the presence of EDTA alleviated Pb phytotoxicity through changes in plant biomass, root morphology and chlorophyll contents. Lead toxicity induced hydrogen peroxide (H2O2) accumulation and lipid peroxidation in both ecotypes of S. alfredii. The activities of superoxide dismutase (SOD), guaiacol peroxidase (G-POD), ascorbate peroxidase, and dehydroascorbate reductase elevated in both leaves and roots of AE as well as in leaves of NAE with the increasing Pb levels, but SOD and G-POD declined in roots of NAE. Enhancement in glutathione reductase activity was only detected in roots of NAE while a depression in catalase activity was recorded in the leaves of NAE. A significant enhancement in glutathione and ascorbic acid (AsA) levels occurred in both ecotypes exposed to Pb and Pb/EDTA treatment compared with the control, however, the differences between these two treatments were insignificant. The dehydroascorbate (DHA) contents in roots of both ecotypes were 1.41 to 11.22-fold higher than those in leaves, whereas the ratios of AsA to DHA (1.38 to 6.84) in leaves altering more to the reduced AsA form were much higher than those in roots. These results suggested that antioxidative enzymes and antioxidants play an important role in counteracting Pb stress in S. alfredii.展开更多
文摘Heavy rain falling on land at the upper reaches of the Kelantan River, Malaysia, on December 2014, had resulted in severe soil erosion and untold damages to croplands. The lower reaches of the river were heavily silted with infertile materials considered unfit for crop production. A study was conducted to explain why the flood phenomenon occurred, to determine the physico-chemical properties of the sediments silted in the Kelantan Plains and to propose measures for soil mitigation. Results showed that the silted sediments were characterized by the presence of quarts, mica, feldspars, kaolinite, gibbsite and hematite believed to come from the top- and subsoil of the upland areas. The sediments’ pH was very low and Al and/or Fe contents were very high, while nitrogen and carbon contents varied from area to area. Soils in the Kelantan Plains badly affected by this great flood needed to undergo proper ameliorative program. The most appropriate measure would be to apply ground magnesium limestone in combination with bio-fertilizer fortified with beneficial microbes that would increase their pH to a level above 5, which consequently eliminates Al<sup>3+</sup> and/or Fe<sup>2+</sup> that causes toxicity to the crops growing on them. The organic material so added would enhance the formation of soil structures. It is advised that the farming communities in the upper reaches of the Kelantan River would have to follow the advice advocated by the Department of Agriculture, Peninsular Malaysia, via MyGAP initiative, in order to sustain agricultural production on their land.
文摘Drought is one of the hot topics needing urgent attention in the current era of climate change.It massively disturbs the rice growth and productivity and is becoming a serious threat.The drought avoidance strategies in rice include stomatal closure,cellular adaptation and changes in root development.Moreover,the endogenous plant hormones(abscisic acid and jasmonic acid)and reactive oxygen species have paramount importance in drought tolerance in rice.The drought tolerance induces modification in biochemical,molecular and physiological properties of plants.At the molecular level,expression of several transcription-factors is modulated which further determine the activation of drought responsive gene families.Mitogen activated protein kinases and Ca signaling pathways initiate an array of signaling cascade for mediating the gene expression in rice.Approaches,conventional breeding methods combined with modern emerging techniques such as genetic engineering,to improve rice drought tolerance were discussed.This review provided recent insights into major regulatory factors against drought stress,signaling mechanisms and molecular engineering strategies(including conventional transgenic and recent genome editing approaches)to induce drought tolerance in rice.
基金the National Natural Science Foundation of China (20477039)the Program for Changjiang Scholars and Innovative Research Team inUniversity (IRT0536)the State Key Basic Research and Develop-ment Plan of China from the Science and Technology Ministry of China(2002CB410804).
文摘The phytotoxicity and antioxidative adaptations of lead (Pb) accumulating ecotype (AE) and non-accumulating ecotype (NAE) of Sedum alfredii Hance were investigated under different Pb treatments involving 0, 0.02 mmol/L Pb, 0.1 mmol/L Pb and 0.1 mmol/L Pb/0.1 mmol/L ethylenediaminetetraacetic acid (EDTA) for 6days. With the increasing Pb level, the Pb concentration in the shoots of AE plants enhanced accordingly, and EDTA supply helped 51% of Pb translocation to shoots of AE compared with those treated with 0.1 mmol/L Pb alone. Moreover, the presence of EDTA alleviated Pb phytotoxicity through changes in plant biomass, root morphology and chlorophyll contents. Lead toxicity induced hydrogen peroxide (H2O2) accumulation and lipid peroxidation in both ecotypes of S. alfredii. The activities of superoxide dismutase (SOD), guaiacol peroxidase (G-POD), ascorbate peroxidase, and dehydroascorbate reductase elevated in both leaves and roots of AE as well as in leaves of NAE with the increasing Pb levels, but SOD and G-POD declined in roots of NAE. Enhancement in glutathione reductase activity was only detected in roots of NAE while a depression in catalase activity was recorded in the leaves of NAE. A significant enhancement in glutathione and ascorbic acid (AsA) levels occurred in both ecotypes exposed to Pb and Pb/EDTA treatment compared with the control, however, the differences between these two treatments were insignificant. The dehydroascorbate (DHA) contents in roots of both ecotypes were 1.41 to 11.22-fold higher than those in leaves, whereas the ratios of AsA to DHA (1.38 to 6.84) in leaves altering more to the reduced AsA form were much higher than those in roots. These results suggested that antioxidative enzymes and antioxidants play an important role in counteracting Pb stress in S. alfredii.