We derive the differential equation, which is satisfied by the ITER scalings for the dynamic energy confinement time. We show that this differential equation can also be obtained from the differential equation for the...We derive the differential equation, which is satisfied by the ITER scalings for the dynamic energy confinement time. We show that this differential equation can also be obtained from the differential equation for the energy confinement time, derived from the energy balance equation, when the plasma is near the steady state. We find that the values of the scaling parameters are linked to the second derivative of the power loss, estimated at the steady state. As an example of an application, the solution of the differential equation for the energy confinement time is compared with the profile obtained by solving numerically the balance equations (closed by a transport model) for a concrete Tokamak-plasma.展开更多
Rapid progress in the development of multispectral optoacoustic tomography techniques has enabled unprecedented insights into biological dynamics and molecular processes in vivo and noninvasively at penetration and sp...Rapid progress in the development of multispectral optoacoustic tomography techniques has enabled unprecedented insights into biological dynamics and molecular processes in vivo and noninvasively at penetration and spatiotemporal scales not covered by modern optical microscopy methods.Ultrasound imaging provides highly complementary information on elastic and functional tissue properties and further aids in enhancing optoacoustic image quality.We devised the first hybrid transmission–reflection optoacoustic ultrasound(TROPUS)small animal imaging platform that combines optoacoustic tomography with both reflection-and transmission-mode ultrasound computed tomography.The system features full-view cross-sectional tomographic imaging geometry for concomitant noninvasive mapping of the absorbed optical energy,acoustic reflectivity,speed of sound,and acoustic attenuation in whole live mice with submillimeter resolution and unrivaled image quality.Graphics-processing unit(GPU)-based algorithms employing spatial compounding and bent-ray-tracing iterative reconstruction were further developed to attain real-time rendering of ultrasound tomography images in the full-ring acquisition geometry.In vivo mouse imaging experiments revealed fine details on the organ parenchyma,vascularization,tissue reflectivity,density,and stiffness.We further used the speed of sound maps retrieved by the transmission ultrasound tomography to improve optoacoustic reconstructions via two-compartment modeling.The newly developed synergistic multimodal combination offers unmatched capabilities for imaging multiple tissue properties and biomarkers with high resolution,penetration,and contrast.展开更多
We calculate the D s 1 (2536) ^+ decays into D*K channels,including the decay D s 1 (2536) + → D + π-K + through a virtual D*0 in a constituent quark model.Widths and S/D amplitudes ratio are in agreement ...We calculate the D s 1 (2536) ^+ decays into D*K channels,including the decay D s 1 (2536) + → D + π-K + through a virtual D*0 in a constituent quark model.Widths and S/D amplitudes ratio are in agreement with the recent Belle and BABAR data,being the results sensitive to 1 P 1 and 3 P 1 mixture.展开更多
文摘We derive the differential equation, which is satisfied by the ITER scalings for the dynamic energy confinement time. We show that this differential equation can also be obtained from the differential equation for the energy confinement time, derived from the energy balance equation, when the plasma is near the steady state. We find that the values of the scaling parameters are linked to the second derivative of the power loss, estimated at the steady state. As an example of an application, the solution of the differential equation for the energy confinement time is compared with the profile obtained by solving numerically the balance equations (closed by a transport model) for a concrete Tokamak-plasma.
基金the European Research Council under grant ERC-2015-CoG-682379German Research Foundation Grant RA1848/5-1+2 种基金partial support from the Spanish Government(FPA2015-65035-P,RTC-2015-3772-1)Comunidad de Madrid(S2013/MIT-3024 TOPUS-CM,B2017/BMD-3888 PRONTO-CM)European Regional Funds.
文摘Rapid progress in the development of multispectral optoacoustic tomography techniques has enabled unprecedented insights into biological dynamics and molecular processes in vivo and noninvasively at penetration and spatiotemporal scales not covered by modern optical microscopy methods.Ultrasound imaging provides highly complementary information on elastic and functional tissue properties and further aids in enhancing optoacoustic image quality.We devised the first hybrid transmission–reflection optoacoustic ultrasound(TROPUS)small animal imaging platform that combines optoacoustic tomography with both reflection-and transmission-mode ultrasound computed tomography.The system features full-view cross-sectional tomographic imaging geometry for concomitant noninvasive mapping of the absorbed optical energy,acoustic reflectivity,speed of sound,and acoustic attenuation in whole live mice with submillimeter resolution and unrivaled image quality.Graphics-processing unit(GPU)-based algorithms employing spatial compounding and bent-ray-tracing iterative reconstruction were further developed to attain real-time rendering of ultrasound tomography images in the full-ring acquisition geometry.In vivo mouse imaging experiments revealed fine details on the organ parenchyma,vascularization,tissue reflectivity,density,and stiffness.We further used the speed of sound maps retrieved by the transmission ultrasound tomography to improve optoacoustic reconstructions via two-compartment modeling.The newly developed synergistic multimodal combination offers unmatched capabilities for imaging multiple tissue properties and biomarkers with high resolution,penetration,and contrast.
基金Supported by Ministerio de Ciencia y Tecnología(FPA2007-65748)Junta de Castilla y León(SA-106A07,GR12)+1 种基金European Community-Research Infrastructure Integrating Activity"Study of Strongly Interacting Matter"(HadronPhysics2 Grant no.227431)Spanish Ingenio-Consolider 2010 Program CPAN(CSD2007-00042)
文摘We calculate the D s 1 (2536) ^+ decays into D*K channels,including the decay D s 1 (2536) + → D + π-K + through a virtual D*0 in a constituent quark model.Widths and S/D amplitudes ratio are in agreement with the recent Belle and BABAR data,being the results sensitive to 1 P 1 and 3 P 1 mixture.