We applied KF Particle, a Kalman Filter package for secondary vertex finding and fitting, to strange and open charm hadron reconstruction in heavy-ion collisions in the STAR experiment. Compared to the conventional he...We applied KF Particle, a Kalman Filter package for secondary vertex finding and fitting, to strange and open charm hadron reconstruction in heavy-ion collisions in the STAR experiment. Compared to the conventional helix swimming method used in STAR, the KF Particle method considerably improved the reconstructed Λ, Ω, and D~0 significance. In addition, the Monte Carlo simulation with STAR detector responses could adequately reproduce the topological variable distributions reconstructed in real data using the KF Particle method, thereby retaining substantial control of the reconstruction efficiency uncertainties for strange and open charm hadron measurements in heavy-ion collisions.展开更多
Shear bands in metallic materials have been reported to be catastrophic because they normally lead to non-uniform plastic deformation. Ductility of laminated metallic composites deteriorates with increasing processing...Shear bands in metallic materials have been reported to be catastrophic because they normally lead to non-uniform plastic deformation. Ductility of laminated metallic composites deteriorates with increasing processing strain, particularly for those having hexagonal-close-packed(hcp) constituents due to inadequate slip systems and consequently prominent shear banding. Here, we propose a design strategy that counterintuitively tolerates the bands with localized strains, i.e. the shear banded laminar(SBL) structure, which promotes <c+a> dislocation activation in hcp metals and renders unprecedented strengthductility combination in hcp-metal-based composites fabricated by accumulative roll bonding(ARB). The SBL structure is characterized with one soft hcp metal constrained by adjacent hard metal in which dislocations have been accumulated near the bimetal interfaces. High-energy X-ray diffraction astonishingly reveals that more than 90% of dislocations are non-basal in Ti layers of the SBL Ti/Nb composite processed by eight ARB cycles. Moreover, <c+a> dislocations occupy a high fraction of ~30%, promoting further <c+a>cross slip. The unique stress field tailored by both shear banding and heterophase interface-mediated deformation accommodation triggers important <c+a> slip. This SBL design is of significance for developing hcp-based laminates and other heterostructured materials with high performances.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 11890712 and 12061141008)the National Key R&D Program of China (Nos. 2018YFE0104700 and 2018YFE0205200)+1 种基金supported in part by the Offices of NP and HEP within the U.S. DOE Office of ScienceYue-Hang Leung was partially supported by the GSI-Heidelberg cooperation contract。
文摘We applied KF Particle, a Kalman Filter package for secondary vertex finding and fitting, to strange and open charm hadron reconstruction in heavy-ion collisions in the STAR experiment. Compared to the conventional helix swimming method used in STAR, the KF Particle method considerably improved the reconstructed Λ, Ω, and D~0 significance. In addition, the Monte Carlo simulation with STAR detector responses could adequately reproduce the topological variable distributions reconstructed in real data using the KF Particle method, thereby retaining substantial control of the reconstruction efficiency uncertainties for strange and open charm hadron measurements in heavy-ion collisions.
基金financially supported by the National Natural Science Foundation of China(No.51922026)the Fundamental Research Funds for the Central Universities(Nos.N2002005 and N2007011)+2 种基金the 111 Project(No.B20029)the support of the Czech Ministry of Education,Youth and Sports(infrastructure ESS Scandinavia-CZ)project(No.LM2018111)the support by China Scholarship Council。
文摘Shear bands in metallic materials have been reported to be catastrophic because they normally lead to non-uniform plastic deformation. Ductility of laminated metallic composites deteriorates with increasing processing strain, particularly for those having hexagonal-close-packed(hcp) constituents due to inadequate slip systems and consequently prominent shear banding. Here, we propose a design strategy that counterintuitively tolerates the bands with localized strains, i.e. the shear banded laminar(SBL) structure, which promotes <c+a> dislocation activation in hcp metals and renders unprecedented strengthductility combination in hcp-metal-based composites fabricated by accumulative roll bonding(ARB). The SBL structure is characterized with one soft hcp metal constrained by adjacent hard metal in which dislocations have been accumulated near the bimetal interfaces. High-energy X-ray diffraction astonishingly reveals that more than 90% of dislocations are non-basal in Ti layers of the SBL Ti/Nb composite processed by eight ARB cycles. Moreover, <c+a> dislocations occupy a high fraction of ~30%, promoting further <c+a>cross slip. The unique stress field tailored by both shear banding and heterophase interface-mediated deformation accommodation triggers important <c+a> slip. This SBL design is of significance for developing hcp-based laminates and other heterostructured materials with high performances.