期刊文献+
共找到196篇文章
< 1 2 10 >
每页显示 20 50 100
Application of thermal comfort theory in probabilistic safety assessment of a nuclear power plant 被引量:1
1
作者 ZHOU Tao SUN Canhui +1 位作者 LI Zhenyang WANG Zenghui 《Nuclear Science and Techniques》 SCIE CAS CSCD 2011年第5期316-320,共5页
Human factor errors in probabilistic safety assessment(PSA) of a nuclear power plant(NPP) can be prevented using thermal comfort analysis.In this paper,the THERP+HCR model is modified by using PMV (Predicted Mean Vote... Human factor errors in probabilistic safety assessment(PSA) of a nuclear power plant(NPP) can be prevented using thermal comfort analysis.In this paper,the THERP+HCR model is modified by using PMV (Predicted Mean Vote) and PPD(Predicted Percentage Dissatisfied) index system,so as to obtain the operator cognitive reliability,and to reflect and analyze human perception,thermal comfort status,and cognitive ability in a specific NPP environment.The mechanism of human factors in the PSA is analyzed by operators of skill,rule and knowledge types.The THERP+HCR model modified by thermal comfort theory can reflect the conditions in actual environment,and optimize reliability analysis of human factors.Improving human thermal comfort for different types of operators reduces adverse factors due to human errors,and provides a safe and optimum decision-making for NPPs. 展开更多
关键词 概率安全评价 热舒适性 安全评估 核电厂 HCR模型 THERP 应用 人为因素
下载PDF
The Fukushima Nuclear Accident: Insights on the Safety Aspects
2
作者 Zieli Dutra Thomé Rogério dos Santos Gomes +1 位作者 Fernando Carvalho da Silva Sergio de Oliveira Vellozo 《World Journal of Nuclear Science and Technology》 2015年第3期169-182,共14页
The Fukushima nuclear accident has generated doubts and questions which need to be properly understood and addressed. This scientific attitude became necessary to allow the use of the nuclear technology for electricit... The Fukushima nuclear accident has generated doubts and questions which need to be properly understood and addressed. This scientific attitude became necessary to allow the use of the nuclear technology for electricity generation around the world. The nuclear stakeholders are working to obtain these technical answers for the Fukushima questions. We believe that, such challenges will be, certainly, implemented in the next reactor generation, following the technological evolution. The purpose of this work is to perform a critical analysis of the Fukushima nuclear accident, focusing at the common cause failures produced by tsunami, as well as an analysis of the main redundant systems. This work also assesses the mitigative procedures and the subsequent consequences of such actions, which gave results below expectations to avoid the progression of the accident, discussing the concept of sharing of structures, systems and components at multi-unit nuclear power plants, and its eventual inappropriate use in safety-related devices which can compromise the nuclear safety, as well as its consequent impact on the Fukushima accident scenario. The lessons from Fukushima must be better learned, aiming the development of new procedures and new safety systems. Thus, the nuclear technology could reach a higher evolution level in its safety requirements. This knowledge will establish a conceptual milestone in the safety system design, becoming necessary the review of the current acceptance criteria of safety-related systems. 展开更多
关键词 FUKUSHIMA NUCLEAR ACCIDENT NUCLEAR SAFETY SAFETY CULTURE
下载PDF
Switching Control Method for Optimal State Feedback Controller of Nuclear Reactor Power System
3
作者 Airan Dang Bowen Tu Xiuchun Luan 《Journal of Applied Mathematics and Physics》 2023年第8期2480-2490,共11页
Due to the nonlinearity of the reactor power system, the load tracking situation is closely related to the initial steady-state power and the final steady-state power after the introduction of the state feedback contr... Due to the nonlinearity of the reactor power system, the load tracking situation is closely related to the initial steady-state power and the final steady-state power after the introduction of the state feedback controller. Therefore, when the initial power and the final stable power are determined, the particle swarm optimization algorithm is used to find the optimal controller parameters to minimize the load tracking error. Since there are many combinations of initial stable power and final stable power, it is not possible to find the optimal controller parameters for all combinations, so the neural network is used to take the final stable power and the initial stable power as input, and the optimal controller parameters as the output. This method obtains the optimal state feedback controller switching control method can achieve a very excellent load tracking effect in the case of continuous power change, in the power change time point, the response is fast, in the controller parameter switching time point, the actual power does not fluctuate due to the change of controller parameters. . 展开更多
关键词 Optimal Status Feedback Particle Swarm Optimization Neural Networks Controller Switching Control Load Tracking
下载PDF
Assessment of Dependent Performance Shaping Factors in SPAR-H Based on Pearson Correlation Coefficient 被引量:1
4
作者 Xiaoyan Su Shuwen Shang +2 位作者 Zhihui Xu Hong Qian Xiaolei Pan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1813-1826,共14页
With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in th... With the improvement of equipment reliability,human factors have become the most uncertain part in the system.The standardized Plant Analysis of Risk-Human Reliability Analysis(SPAR-H)method is a reliable method in the field of human reliability analysis(HRA)to evaluate human reliability and assess risk in large complex systems.However,the classical SPAR-H method does not consider the dependencies among performance shaping factors(PSFs),whichmay cause overestimation or underestimation of the risk of the actual situation.To address this issue,this paper proposes a new method to deal with the dependencies among PSFs in SPAR-H based on the Pearson correlation coefficient.First,the dependence between every two PSFs is measured by the Pearson correlation coefficient.Second,the weights of the PSFs are obtained by considering the total dependence degree.Finally,PSFs’multipliers are modified based on the weights of corresponding PSFs,and then used in the calculating of human error probability(HEP).A case study is used to illustrate the procedure and effectiveness of the proposed method. 展开更多
关键词 Reliability evaluation human reliability analysis SPAR-H performance shaping factors DEPENDENCE pearson correlation analysis
下载PDF
Development of CONTHAC-3D and hydrogen distribution analysis of HPR1000
5
作者 Hui Wang Jing-Jing Li +2 位作者 Yuan Chang Gong-Lin Li Ming Ding 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第2期210-221,共12页
An in-house code,CONTHAC-3D,was developed to calculate and analyze thermal-hydraulic phenomena in containments during severe accidents.CONTHAC-3D is a three-dimensional computational fluid dynamics code that can be ap... An in-house code,CONTHAC-3D,was developed to calculate and analyze thermal-hydraulic phenomena in containments during severe accidents.CONTHAC-3D is a three-dimensional computational fluid dynamics code that can be applied to predict gas flow,diffusion,and steam condensation in a containment during a severe hypothetical accident,as well as to obtain an estimate of the local hydrogen concentration in various zones of the containment.CONTHAC-3D was developed using multiple models to simulate the features of the proprietary systems and equipment of HPR1000 and ACP100,such as the passive cooling system,passive autocatalytic recombiners and the passive air cooling system.To validate CONTHAC-3D,a GX6 test was performed at the Battelle Model Containment facility.The hydrogen concentration and temperature monitored by the GX6 test are accurately predicted by CONTHAC-3D.Subsequently,the hydrogen distribution in the HPR1000 containment during a severe accident was studied.The results show that the hydrogen removal rates calculated using CONTHAC-3D for different types of PARs agree well with the theoretical values,with an error of less than 1%.As the accident progresses,the hydrogen concentration in the lower compartment becomes higher than that in the large space,which implies that the lower compartment has a higher hydrogen risk than the dome and large space at a later stage of the accident.The amount of hydrogen removed by the PARs placed on the floor of the compartment is small;therefore,raising the installation height of these recombiners appropriately is recommended.However,we do not recommend installing all autocatalytic recombiners at high positions.The study findings in regard to the hydrogen distribution in the HPR1000 containment indicate that CONTHAC-3D can be applied to the study of hydrogen risk containment. 展开更多
关键词 Hydrogen risk mitigation Pressurized water reactor HPR1000 Thermal hydraulic CONTHAC-3D
下载PDF
Trial application of the envelope method to the potential ambiguity problem
6
作者 Li-Yuan Hu Yu-Shou Song 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第1期73-80,共8页
The optical potential ambiguity is a long-standing problem in the analysis of elastic scattering data.For a specific collid-ing system,ambiguous potential families can lead to different behaviors in the nearside and f... The optical potential ambiguity is a long-standing problem in the analysis of elastic scattering data.For a specific collid-ing system,ambiguous potential families can lead to different behaviors in the nearside and farside scattering components.By contrast,the envelope method can decompose the experimental data into two components with negative and positive deflection angles,respectively.Hence,a question arises as to whether the comparison between the calculated nearside(or farside)component and the derived positive-deflection-angle(or negative-deflection-angle)component can help analyze the potential ambiguity problem.In this study,we conducted a trial application of the envelope method to the potential ambiguity problem.The envelope method was improved by including uncertainties in the experimental data.The colliding systems of 16O+28Si at 215.2 MeV and 12C+12C at 1016 MeV were considered in the analyses.For each colliding system,the angular distribution experimental data were described nearly equally well by two potential sets,one of which is“surface transpar-ent”and the other is refractive.The calculated angular distributions were decomposed into nearside and farside scattering components.Using the improved envelope method,the experimental data were decomposed into the positive-deflection-angle and negative-deflection-angle components,which were then compared with the calculated nearside and farside components.The capability of the envelope method to analyze the potential ambiguities was also discussed. 展开更多
关键词 Elastic scattering Optical potential ambiguities Envelope method Nearside/farside decomposition
下载PDF
Effects of counter-current driven by electron cyclotron waves on neoclassical tearing mode suppression
7
作者 高钦 郑平卫 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期501-509,共9页
Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is ... Through theoretical analysis,we construct a physical model that includes the influence of counter-external driven current opposite to the plasma current direction in the neoclassical tearing mode(NTM).The equation is used with this model to obtain the modified Rutherford equation with co-current and counter-current contributions.Consistent with the reported experimental results,numerical simulations have shown that the localized counter external current can only partially suppress NTM when it is far from the resonant magnetic surface.Under some circumstances,the Ohkawa mechanism dominated current drive(OKCD)by electron cyclotron waves can concurrently create both co-current and counter-current.In this instance,the minimal electron cyclotron wave power that suppresses a particular NTM was calculated by the Rutherford equation.The result is marginally less than when taking co-current alone into consideration.As a result,to suppress NTM using OKCD,one only needs to align the co-current with a greater OKCD peak well with the resonant magnetic surface.The effect of its lower counter-current does not need to be considered because the location of the counter-current deviates greatly from the resonant magnetic surface. 展开更多
关键词 driven current neoclassical tearing mode modified Rutherford equation electron cyclotron waves
下载PDF
Nonlinear dynamics of the reversed shear Alfvén eigenmode in burning plasmas
8
作者 王涛 魏士朝 +3 位作者 Sergio BRIGUGLIO Gregorio VLAD Fulvio ZONCA 仇志勇 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第5期1-16,共16页
In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The revers... In a tokamak fusion reactor operated at steady state,the equilibrium magnetic field is likely to have reversed shear in the core region,as the noninductive bootstrap current profile generally peaks off-axis.The reversed shear Alfvén eigenmode(RSAE)as a unique branch of the shear Alfvén wave in this equilibrium,can exist with a broad spectrum in wavenumber and frequency,and be resonantly driven unstable by energetic particles(EP).After briefly discussing the RSAE linear properties in burning plasma condition,we review several key topics of the nonlinear dynamics for the RSAE through both wave-EP resonance and wave-wave coupling channels,and illustrate their potentially important role in reactor-scale fusion plasmas.By means of simplified hybrid MHD-kinetic simulations,the RSAEs are shown to have typically broad phase space resonance structure with both circulating and trapped EP,as results of weak/vanishing magnetic shear and relatively low frequency.Through the route of wave-EP nonlinearity,the dominant saturation mechanism is mainly due to the transported resonant EP radially decoupling with the localized RSAE mode structure,and the resultant EP transport generally has a convective feature.The saturated RSAEs also undergo various nonlinear couplings with other collective oscillations.Two typical routes as parametric decay and modulational instability are studied using nonlinear gyrokinetic theory,and applied to the scenario of spontaneous excitation by a finite amplitude pump RSAE.Multiple RSAEs could naturally couple and induce the spectral energy cascade into a low frequency Alfvénic mode,which may effectively transfer the EP energy to fuel ions via collisionless Landau damping.Moreover,zero frequency zonal field structure could be spontaneously excited by modulation of the pump RSAE envelope,and may also lead to saturation of the pump RSAE by both scattering into stable domain and local distortion of the continuum structure. 展开更多
关键词 reversed shear Alfvén eigenmode energetic particle nonlinear gyrokinetic theory saturation burning plasma
下载PDF
An Improved CREAM Model Based on DS Evidence Theory and DEMATEL
9
作者 Zhihui Xu Shuwen Shang +3 位作者 Yuntong Pu Xiaoyan Su Hong Qian Xiaolei Pan 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第3期2597-2617,共21页
Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability ... Cognitive Reliability and Error Analysis Method(CREAM)is widely used in human reliability analysis(HRA).It defines nine common performance conditions(CPCs),which represent the factors thatmay affect human reliability and are used to modify the cognitive failure probability(CFP).However,the levels of CPCs are usually determined by domain experts,whichmay be subjective and uncertain.What’smore,the classicCREAMassumes that the CPCs are independent,which is unrealistic.Ignoring the dependence among CPCs will result in repeated calculations of the influence of the CPCs on CFP and lead to unreasonable reliability evaluation.To address the issue of uncertain information modeling and processing,this paper introduces evidence theory to evaluate the CPC levels in specific scenarios.To address the issue of dependence modeling,the Decision-Making Trial and Evaluation Laboratory(DEMATEL)method is used to process the dependence among CPCs and calculate the relative weights of each CPC,thus modifying the multiplier of the CPCs.The detailed process of the proposed method is illustrated in this paper and the CFP estimated by the proposed method is more reasonable. 展开更多
关键词 Human reliability analysis CREAM uncertainty modeling DEPENDENCE Dempster-Shafer evidence theory DEMATEL
下载PDF
Collisionless shock acceleration of protons in a plasma slab produced in a gas jet by the collision of two laser-driven hydrodynamic shockwaves
10
作者 J.-R.Marquès L.Lancia +11 位作者 P.Loiseau P.Forestier-Colleoni M.Tarisien E.Atukpor V.Bagnoud C.Brabetz F.Consoli J.Domange F.Hannachi P.Nicolaï M.Salvadori B.Zielbauer 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第2期12-25,共14页
We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet[Marquès et al.,Phys.Plasmas 28,023103(2021)].In a continuation of this nu... We have recently proposed a new technique of plasma tailoring by laser-driven hydrodynamic shockwaves generated on both sides of a gas jet[Marquès et al.,Phys.Plasmas 28,023103(2021)].In a continuation of this numerical work,we study experimentally the influence of the tailoring on proton acceleration driven by a high-intensity picosecond laser in three cases:without tailoring,by tailoring only the entrance side of the picosecond laser,and by tailoring both sides of the gas jet.Without tailoring,the acceleration is transverse to the laser axis,with a low-energy exponential spectrum,produced by Coulomb explosion.When the front side of the gas jet is tailored,a forward acceleration appears,which is significantly enhanced when both the front and back sides of the plasma are tailored.This forward acceleration produces higher-energy protons,with a peaked spectrum,and is in good agreement with the mechanism of collisionless shock acceleration(CSA).The spatiotemporal evolution of the plasma profile is characterized by optical shadowgraphy of a probe beam.The refraction and absorption of this beam are simulated by post-processing 3D hydrodynamic simulations of the plasma tailoring.Comparison with the experimental results allows estimation of the thickness and near-critical density of the plasma slab produced by tailoring both sides of the gas jet.These parameters are in good agreement with those required for CSA. 展开更多
关键词 acceleration HYDRODYNAMIC COLLISION
下载PDF
Nonlinear Impact Damage Evolution of Charpy Type and Analysis of Its Key Influencing Factors
11
作者 Jianfeng Mao Qian Xu +4 位作者 Jiadong Yang Chi Cao Dasheng Wang Fengping Zhong Mingya Chen 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2024年第1期254-264,共11页
The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with hars... The current research of Charpy impact mainly focuses on obtaining the ductile brittle transition temperature of materials by experiments.Compared with experiments,numerical simulation can study many problems with harsh conditions.However,there are still few studies on the influence of geometric factors such as side grooves.In this paper,the geometry of standard Charpy impact test is designed.Specimens with different widths and side grooves are tested.The finite element model of Charpy impact was established by ABAQUS software.Use test results and simulation results to verify each other.The effects of sample width,side groove depth and side groove bottom fillet on the impact fracture resistance of the sample were studied.The results show that the specimen width is positively correlated with the impact toughness of the specimen.The side groove greatly reduces the impact toughness of the material;the toughness of side groove decreases with the increase of depth;the fracture toughness of side groove decreases with the increase of fillet at the bottom of side groove.The proportion of toughness energy to impact energy of samples was analyzed.The results show that the toughness energy accounts for about 70%of the impact energy of the sample,which has little to do with the geometric characteristics of the sample.This study presents a reliable method for studying Charpy impact tests.The influence of geometric parameters is obtained,which provides a reference method for the study of impact toughness of high toughness materials. 展开更多
关键词 Johnson-Cook model Impact toughness Charpy impact
下载PDF
Radioisotope production using lasers:From basic science to applications
12
作者 M.R.D.Rodrigues A.Bonasera +37 位作者 M.Scisciò J.A.Pérez-Hernández M.Ehret F.Filippi P.L.Andreoli M.Huault H.Larreur D.Singappuli D.Molloy D.Raffestin M.Alonzo G.G.Rapisarda D.Lattuada G.L.Guardo C.Verona Fe.Consoli G.Petringa A.McNamee M.La Cognata S.Palmerini T.Carriere M.Cipriani G.Di Giorgio G.Cristofari R.De Angelis G.A.P.Cirrone D.Margarone L.Giuffrida D.Batani P.Nicolai K.Batani R.Lera L.Volpe D.Giulietti S.Agarwal M.Krupka S.Singh Fa.Consoli 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第3期31-44,共14页
The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometer... The discovery of chirped pulse amplification has led to great improvements in laser technology,enabling energetic laser beams to be compressed to pulse durations of tens of femtoseconds and focused to a few micrometers.Protons with energies of tens of MeV can be accelerated using,for instance,target normal sheath acceleration and focused on secondary targets.Under such conditions,nuclear reactions can occur,with the production of radioisotopes suitable for medical application.The use of high-repetition lasers to produce such isotopes is competitive with conventional methods mostly based on accelerators.In this paper,we study the production of^(67)Cu,^(63)Zn,^(18)F,and^(11)C,which are currently used in positron emission tomography and other applications.At the same time,we study the reactions^(10)B(p,α)^(7)Be and^(70)Zn(p,4n)^(67)Ga to put further constraints on the proton distributions at different angles,as well as the reaction^(11)B(p,α)^(8)Be relevant for energy production.The experiment was performed at the 1 PW laser facility at VegaⅢin Salamanca,Spain.Angular distributions of radioisotopes in the forward(with respect to the laser direction)and backward directions were measured using a high purity germanium detector.Our results are in reasonable agreement with numerical estimates obtained following the approach of Kimura and Bonasera[Nucl.Instrum.Methods Phys.Res.,Sect.A 637,164–170(2011)]. 展开更多
关键词 PURITY ESTIMATES BACKWARD
下载PDF
Development of a PARCS/Serpent model for neutronics analysis of the Dalat nuclear research reactor 被引量:4
13
作者 Viet-Phu Tran Kien-Cuong Nguyen +4 位作者 Donny Hartanto Hoai-Nam Tran Vinh Thanh Tran Van-Khanh Hoang Pham Nhu Viet Ha 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第2期32-44,共13页
Cross-sectional homogenization for full-core calculations of small and complex reactor configurations,such as research reactors,has been recently recognized as an interesting and challenging topic.This paper presents ... Cross-sectional homogenization for full-core calculations of small and complex reactor configurations,such as research reactors,has been recently recognized as an interesting and challenging topic.This paper presents the development of a PARCS/Serpent model for the neutronics analysis of a research reactor type TRIGA Mark-II loaded with Russian VVR-M2 fuel(known as the Dalat Nuclear Research Reactor or DNRR).The full-scale DNRR model and a supercell model for a shim/safety rod and its surrounding fuel bundles with the Monte Carlo code Serpent 2 were proposed to generate homogenized fewgroup cross sections for full-core diffusion calculations with PARCS.The full-scale DNRR model with Serpent 2 was also utilized as a reference to verify the PARCS/Serpent calculations.Comparison of the effective neutron multiplication factors,radial and axial core power distributions,and control rod worths showed a generally good agreement between PARCS and Serpent 2.In addition,the discrepancies between the PARCS and Serpent 2 results are also discussed.Consequently,the results indicate the applicability of the PARCS/Serpent model for further steady state and transient analyses of the DNRR. 展开更多
关键词 PARCS Serpent 2 Group constant DNRR
下载PDF
Rapid interrogation of special nuclear materials by combining scattering and transmission nuclear resonance fluorescence spectroscopy 被引量:4
14
作者 Hao-Yang Lan Tan Song +2 位作者 Jia-Lin Zhang Jian-Liang Zhou Wen Luo 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第8期67-77,共11页
The smuggling of special nuclear materials(SNMs)across national borders is becoming a serious threat to nuclear nonproliferation.This paper presents a feasibility study on the rapid interrogation of concealed SNMs by ... The smuggling of special nuclear materials(SNMs)across national borders is becoming a serious threat to nuclear nonproliferation.This paper presents a feasibility study on the rapid interrogation of concealed SNMs by combining scattering and transmission nuclear resonance fluorescence(s NRF and t NRF)spectroscopy.In s NRF spectroscopy,SNMs such as^(235,238)U are excited by a wide-band photon beam of appropriate energy and exhibit unique NRF signatures.Monte Carlo simulations show that one-dimensional scans can realize isotopic identification of concealed^(235,238)U when the detector array used for interrogation has sufficiently high energy resolution.The simulated isotopic ratio^(235U/238)U is in good agreement with the theoretical value when the SNMs are enclosed in relatively thin iron.This interrogation is followed by t NRF spectroscopy using a narrow-band photon beam with the goal of obtaining tomographic images of the concealed SNMs.The reconstructed image clearly reveals the position of the isotope^(235)U inside an iron rod.It is shown that the interrogation time of s NRF and t NRF spectroscopy is one order of magnitude lower than that when only t NRF spectroscopy is used and results in a missed-detection rate of 10^(-3).The proposed method can also be applied for isotopic imaging of other SNMs such as^(239,240)Pu and^(237)Np. 展开更多
关键词 Special nuclear material Nondestructive interrogation Nuclear resonance fluorescence
下载PDF
Loss of offsite power (LOOP) accident analysis by integration of deterministic and probabilistic approaches in Bushehr-1 VVER-1000/V446 nuclear power plant 被引量:2
15
作者 Mohsen Esfandiari Gholamreza Jahanfarnia +1 位作者 Kamran Sepanloo Ehsan Zarifi 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2022年第5期39-52,共14页
The results of an accident analysis for the loss of offsite power(LOOP)scenario in a reference Bushehr-1 VVER-1000/V446 nuclear power plant(NPP)are presented in this paper.This study attempted to provide a better anal... The results of an accident analysis for the loss of offsite power(LOOP)scenario in a reference Bushehr-1 VVER-1000/V446 nuclear power plant(NPP)are presented in this paper.This study attempted to provide a better analysis of LOOP accident management by integrating deterministic and probabilistic approaches.The RELAP5 code was used to investigate the occurrence of specific thermal–hydraulic phenomena.The probabilistic safety assessment of the LOOP accident is presented using the SAPHIRE software.LOOP accident data were extracted from the Bushehr NPP final safety analysis reports and probabilistic safety analysis reports.A deterministic approach was used to reduce the core damage frequency in the probabilistic analysis of LOOP accidents.The probabilistic approach was used to better observe the philosophy of defense in depth and safety margins in the deterministic analysis of the LOOP accident.The results show that the integration of the two approaches in LOOP accident investigations improved accident control. 展开更多
关键词 Loss of offsite power DETERMINISTIC Probabilistic INTEGRATION RELAP5 SAPHIRE
下载PDF
k_(eff)uncertainty quantification and analysis due to nuclear data during the full lifetime burnup calculation for a small-sized prismatic high temperature gas-cooled reactor 被引量:3
16
作者 Rong-Rui Yang Yuan Yuan +2 位作者 Chen Hao Ji Ma Guang-Hao Liu 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2021年第11期105-118,共14页
To benefit from recent advances in modeling and computational algorithms,as well as the availability of new covariance data,sensitivity and uncertainty analyses are needed to quantify the impact of uncertain sources o... To benefit from recent advances in modeling and computational algorithms,as well as the availability of new covariance data,sensitivity and uncertainty analyses are needed to quantify the impact of uncertain sources on the design parameters of small prismatic high-temperature gascooled reactors(HTGRs).In particular,the contribution of nuclear data to the k_(eff)uncertainty is an important part of the uncertainty analysis of small-sized HTGR physical calculations.In this study,a small-sized HTGR designed by China Nuclear Power Engineering Co.,Ltd.was selected for k_(eff)uncertainty analysis during full lifetime burnup calculations.Models of the cold zero power(CZP)condition and full lifetime burnup process were constructed using the Reactor Monte Carlo Code RMC for neutron transport calculation,depletion calculation,and sensitivity and uncertainty analysis.For the sensitivity analysis,the Contribution-Linked eigenvalue sensitivity/Uncertainty estimation via Track length importance Characterization(CLUTCH)method was applied to obtain sensitive information,and the "sandwich" method was used to quantify the k_(eff)uncertainty.We also compared the k_(eff)uncertainties to other typical reactors.Our results show that ^(235)U is the largest contributor to k_(eff)uncertainty for both the CZP and depletion conditions,while the contribution of ^(239)Pu is not very significant because of the design of low discharge burnup.It is worth noting that the radioactive capture reaction of ^(28)Si significantly contributes to the k_(eff)uncertainty owing to its specific fuel design.However,the k_(eff)uncertainty during the full lifetime depletion process was relatively stable,only increasing by 1.12%owing to the low discharge burnup design of small-sized HTGRs.These numerical results are beneficial for neutronics design and core parameters optimization in further uncertainty propagation and quantification study for small-sized HTGR. 展开更多
关键词 Small-sized HTGR SU analysis Nuclear data BURNUP
下载PDF
Fault prediction method for nuclear power machinery based on Bayesian PPCA recurrent neural network model 被引量:6
17
作者 Jun Ling Gao-Jun Liu +2 位作者 Jia-Liang Li Xiao-Cheng Shen Dong-Dong You 《Nuclear Science and Techniques》 SCIE CAS CSCD 2020年第8期13-23,共11页
Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated ... Early fault warning for nuclear power machinery is conducive to timely troubleshooting and reductions in safety risks and unnecessary costs. This paper presents a novel intelligent fault prediction method, integrated probabilistic principal component analysis(PPCA), multi-resolution wavelet analysis, Bayesian inference, and RNN model for nuclear power machinery that consider data uncertainty and chaotic time series. After denoising the source data, the Bayesian PPCA method is employed for dimensional reduction to obtain a refined data group. A recurrent neural network(RNN) prediction model is constructed, and a Bayesian statistical inference approach is developed to quantitatively assess the prediction reliability of the model. By modeling and analyzing the data collected on the steam turbine and components of a nuclear power plant, the results of the goodness of fit, mean square error distribution, and Bayesian confidence indicate that the proposed RNN model can implement early warning in the fault creep period. The accuracy and reliability of the proposed model are quantitatively verified. 展开更多
关键词 Fault prediction Nuclear power machinery Steam turbine Recurrent neural network Probabilistic principal component analysis Bayesian confidence
下载PDF
Enhanced graph-based fault diagnostic system for nuclear power plants 被引量:1
18
作者 Yong-Kuo Liu Xin Ai +4 位作者 Abiodun Ayodeji Mao-Pu Wu Min-Jun Peng Hong Xia Wei-Feng Yu 《Nuclear Science and Techniques》 SCIE CAS CSCD 2019年第12期8-21,共14页
Scheduled maintenance and condition-based online monitoring are among the focal points of recent research to enhance nuclear plant safety.One of the most effective ways to monitor plant conditions is by implementing a... Scheduled maintenance and condition-based online monitoring are among the focal points of recent research to enhance nuclear plant safety.One of the most effective ways to monitor plant conditions is by implementing a full-scope,plant-wide fault diagnostic system.However,most of the proposed diagnostic techniques are perceived as unreliable by operators because they lack an explanation module,their implementation is complex,and their decision/inference path is unclear.Graphical formalism has been considered for fault diagnosis because of its clear decision and inference modules,and its ability to display the complex causal relationships between plant variables and reveal the propagation path used for fault localization in complex systems.However,in a graphbased approach,decision-making is slow because of rule explosion.In this paper,we present an enhanced signed directed graph that utilizes qualitative trend evaluation and a granular computing algorithm to improve the decision speed and increase the resolution of the graphical method.We integrate the attribute reduction capability of granular computing with the causal/fault propagation reasoning capability of the signed directed graph and comprehensive rules in a decision table to diagnose faults in a nuclear power plant.Qualitative trend analysis is used to solve the problems of fault diagnostic threshold selection and signed directed graph node state determination.The similarity reasoning and detection ability of the granular computing algorithm ensure a compact decision table and improve the decision result.The performance of the proposed enhanced system was evaluated on selected faults of the Chinese Fuqing 2 nuclear reactor.The proposed method offers improved diagnostic speed and efficient data processing.In addition,the result shows a considerable reduction in false positives,indicating that the method provides a reliable diagnostic system to support further intervention by operators. 展开更多
关键词 NUCLEAR power plants FAULT diagnosis SIGNED directed graph DECISION TABLE GRANULAR computing
下载PDF
The Role of Countermeasures in Mitigating the Radiological Consequences of Nuclear Power Plant Accidents 被引量:1
19
作者 F.S. Tawfik M.M. Abdel-Aal 《Journal of Environmental Science and Engineering》 2011年第7期920-924,共5页
关键词 核电站事故 缓解作用 辐射后果 压水堆核电机组 成本估计 失水事故 健康影响 剂量计算
下载PDF
An improved porous media model for nuclear reactor analysis
20
作者 Roozbeh Vadi Kamran Sepanloo 《Nuclear Science and Techniques》 SCIE CAS CSCD 2016年第1期117-140,共24页
In this study, two modifications are proposed to mitigate drawbacks of the conventional approach of using the ‘‘Porous Media Model''(PMM) for nuclear reactor analysis. In the conventional approach, whole rea... In this study, two modifications are proposed to mitigate drawbacks of the conventional approach of using the ‘‘Porous Media Model''(PMM) for nuclear reactor analysis. In the conventional approach, whole reactor core simplifies to a single porous medium and also, the resistance coefficients that are essential to using this model are constant values. These conditions impose significant errors and restrict the applications of the model for many cases,including accident analysis. In this article, the procedures for calculating the coefficients are modified by introducing a practical algorithm. Using this algorithm will result in obtaining each coefficient as a function of mass flow rate.Furthermore, the method of applying these coefficients to the reactor core is modified by dividing the core into several porous media instead of one. In this method, each porous medium comprises a single fuel assembly. PMM with these two modifications is termed ‘‘multi-region PMM'' in this study. Then, the multi-region PMM is introduced to a new CFD-based thermo-hydraulic code that is specifically devised for combining with neutronic codes.The CITVAP code, which solves multi-group diffusion equations, is the selected as the neutronic part for this study. The resulting coupled code is used for simulation of natural circulation in a MTR. A new semi-analytic method,based on steady-state CFD analysis is developed to verify the results of this case. Results demonstrate considerable improvement, compared to the conventional approach. 展开更多
关键词 多孔介质模型 模型分析 反应器 传统方法 应用程序 流体力学分析 稳态计算 PMM
下载PDF
上一页 1 2 10 下一页 到第
使用帮助 返回顶部