Background:Colorectal cancer is harmful to the patient’s life.The treatment of patients is determined by accurate preoperative staging.Magnetic resonance imaging(MRI)played an important role in the preoperative exami...Background:Colorectal cancer is harmful to the patient’s life.The treatment of patients is determined by accurate preoperative staging.Magnetic resonance imaging(MRI)played an important role in the preoperative examination of patients with rectal cancer,and artificial intelligence(AI)in the learning of images made significant achievements in recent years.Introducing AI into MRI recognition,a stable platform for image recognition and judgment can be established in a short period.This study aimed to establish an automatic diagnostic platform for predicting preoperative T staging of rectal cancer through a deep neural network.Methods:A total of 183 rectal cancer patients’data were collected retrospectively as research objects.Faster region-based convolutional neural networks(Faster R-CNN)were used to build the platform.And the platform was evaluated according to the receiver operating characteristic(ROC)curve.Results:An automatic diagnosis platform for T staging of rectal cancer was established through the study of MRI.The areas under the ROC curve(AUC)were 0.99 in the horizontal plane,0.97 in the sagittal plane,and 0.98 in the coronal plane.In the horizontal plane,the AUC of T1 stage was 1,AUC of T2 stage was 1,AUC of T3 stage was 1,AUC of T4 stage was 1.In the coronal plane,AUC of T1 stage was 0.96,AUC of T2 stage was 0.97,AUC of T3 stage was 0.97,AUC of T4 stage was 0.97.In the sagittal plane,AUC of T1 stage was 0.95,AUC of T2 stage was 0.99,AUC of T3 stage was 0.96,and AUC of T4 stage was 1.00.Conclusion:Faster R-CNN AI might be an effective and objective method to build the platform for predicting rectal cancer T-staging.Trial registration:chictr.org.cn:ChiCTR1900023575;http://www.chictr.org.cn/showproj.aspx?proj=39665.展开更多
基金National Natural Science Foundation of China(No.81802888)Key Research and Development Project of Shandong Province(No.2018GSF118206+1 种基金No.2018GSF118088)Natural Science Foundation of Shandong Province(No.ZR2019PF017)。
文摘Background:Colorectal cancer is harmful to the patient’s life.The treatment of patients is determined by accurate preoperative staging.Magnetic resonance imaging(MRI)played an important role in the preoperative examination of patients with rectal cancer,and artificial intelligence(AI)in the learning of images made significant achievements in recent years.Introducing AI into MRI recognition,a stable platform for image recognition and judgment can be established in a short period.This study aimed to establish an automatic diagnostic platform for predicting preoperative T staging of rectal cancer through a deep neural network.Methods:A total of 183 rectal cancer patients’data were collected retrospectively as research objects.Faster region-based convolutional neural networks(Faster R-CNN)were used to build the platform.And the platform was evaluated according to the receiver operating characteristic(ROC)curve.Results:An automatic diagnosis platform for T staging of rectal cancer was established through the study of MRI.The areas under the ROC curve(AUC)were 0.99 in the horizontal plane,0.97 in the sagittal plane,and 0.98 in the coronal plane.In the horizontal plane,the AUC of T1 stage was 1,AUC of T2 stage was 1,AUC of T3 stage was 1,AUC of T4 stage was 1.In the coronal plane,AUC of T1 stage was 0.96,AUC of T2 stage was 0.97,AUC of T3 stage was 0.97,AUC of T4 stage was 0.97.In the sagittal plane,AUC of T1 stage was 0.95,AUC of T2 stage was 0.99,AUC of T3 stage was 0.96,and AUC of T4 stage was 1.00.Conclusion:Faster R-CNN AI might be an effective and objective method to build the platform for predicting rectal cancer T-staging.Trial registration:chictr.org.cn:ChiCTR1900023575;http://www.chictr.org.cn/showproj.aspx?proj=39665.