Fiber reinforced titanium matrix composite is considered as a superior material for advanced lightweight aerospace application. Fiber/matrix interfacial reaction has a significant effect on the mechanical properties o...Fiber reinforced titanium matrix composite is considered as a superior material for advanced lightweight aerospace application. Fiber/matrix interfacial reaction has a significant effect on the mechanical properties of the composites. The SCS-6 SiC fiber reinforced Ti-6Al-4V matrix composite was prepared by foil-fiber-foil (FFF) method at ONERA, France. Stripe samples were cut from the as-consolidated composites and sealed in silicon carbide tube. One group of the samples were annealed for 58h at 550°C, 700°C, 850°C and 1000°C, the other group were annealed at 1000°C for 43h, 58h, 80h, lOOh, respectively. The interface investigation indicated that the connection between SiC fiber and the matrix is favorite in the composite. And the interface width for as-consolidated composite is only about 0.8um. The interface width increase with the prolong of annealing time and the increase of annealing temperature. But the increment for the latter is not as high as the former one, which means the annealing time may be the prior factor to influence the interface reaction. The interface width for the composite annealed at 1000°C for lOOh is about 20um. Interface composition of the composite detected by EDX is as follows: Ti 87.58 wt %, V 4.91 wt %, Al 4.06wt%, Si 3.45 wt %.展开更多
We briefly review the various proposed scenarios that may lead to nonthermal radio emissions from exoplanetary systems(planetary magnetospheres, magnetosphere-ionosphere and magnetospheresatellite coupling, and star-p...We briefly review the various proposed scenarios that may lead to nonthermal radio emissions from exoplanetary systems(planetary magnetospheres, magnetosphere-ionosphere and magnetospheresatellite coupling, and star-planet interactions), and the physical information that can be drawn from their detection. The latter scenario is especially favorable to the production of radio emission above 70 MHz. We summarize the results of past and recent radio searches, and then discuss FAST characteristics and observation strategy, including synergies. We emphasize the importance of polarization measurements and a high duty-cycle for the very weak targets that radio-exoplanets prove to be.展开更多
This article reviews the instrumental developments accomplished at ONERA in order to perform precise non-intrusive measurements of hypersonic flows using laser- and electron-beam-based optical techniques. Point line o...This article reviews the instrumental developments accomplished at ONERA in order to perform precise non-intrusive measurements of hypersonic flows using laser- and electron-beam-based optical techniques. Point line of sight and imaging measurements are possible. Point measurements have been implemented with Electron Beam Fluorescence (EBF) using detection of X-ray radiation and Coherent anti-Stokes Raman Scattering (CARS). When spatial resolution is not required, diode laser absorption spectroscopy yields results integrated along a line. EBF imaging using a high energy pulsed electron gun is also quite promising. Rotational and vibrational populations of nitrogen and nitric oxide have been measured in various hypersonic hyperenthalpic facilities, as well as rotational state-resolved velocities in shocks and boundary layers.展开更多
This paper presents what should be best practice data reduction procedures for pump performance analysis with emphasis on two-phase inlet flow conditions.This becomes a mandatory step especially when pumps performance...This paper presents what should be best practice data reduction procedures for pump performance analysis with emphasis on two-phase inlet flow conditions.This becomes a mandatory step especially when pumps performances are degraded in case of liquid gas mixture at inlet section.Most of following recommendations are based on existing rules that must be recalled for researchers and end users performing centrifugal pump tests and more specifically when comparing the results between each other or/and withCFDapproaches.展开更多
Magnetized laser-produced plasmas are central to many studies in laboratory astrophysics,in inertial confinement fusion,and in industrial applications.Here,we present the results of large-scale three-dimensional magne...Magnetized laser-produced plasmas are central to many studies in laboratory astrophysics,in inertial confinement fusion,and in industrial applications.Here,we present the results of large-scale three-dimensional magnetohydrodynamic simulations of the dynamics of a laser-produced plasma expanding into a transverse magnetic field with a strength of tens of teslas.The simulations show the plasma being confined by the strong magnetic field into a slender slab structured by the magnetized Rayleigh–Taylor instability that develops at the plasma–vacuum interface.We find that when the initial velocity of the plume is perturbed,the slab can develop kink-like motions that disrupt its propagation.展开更多
A numerical study of the parameters controlling the viscous penalty method is investigated to better set up Particle-Resolved Direct Numerical Simulations (PR-DNS) of particulate flows. Based on this analysis, improve...A numerical study of the parameters controlling the viscous penalty method is investigated to better set up Particle-Resolved Direct Numerical Simulations (PR-DNS) of particulate flows. Based on this analysis, improvements of the methods are proposed in order to reach an almost second order convergence in space. The viscous penalty method is validated in Stokes regime by simulating a uniform flow past a fixed isolated cylinder. Moreover, it is also utilized in moderate Reynolds number regime for a uniform flow past a square configuration of cylinder and compared in terms of friction factor to the well-known Ergun correlation.展开更多
Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attr...Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attracting high attention and interest from scholars,engineering experts,and practitioners worldwide.Despite achieving fruitful results in both theoretical and applied aspects over the past five decades,there remains a lack of comprehensive and systematic review articles that provide an overview of recent development in MSIF.In light of this,this paper aims to assist researchers and individuals interested in gaining a quick understanding of the relevant theoretical techniques and development trends in MSIF,which conducts a statistical analysis of academic reports and related application achievements in the field of MSIF over the past two decades,and provides a brief overview of the relevant theories,methodologies,and application domains,as well as key issues and challenges currently faced.Finally,an analysis and outlook on the future development directions of MSIF are presented.展开更多
A compressible lattice Boltzmann-finite difference method is extended by the phase-field approach into a monolithic scheme to study fluid flow and heat transfer through regular arrangements of solid bodies of circular...A compressible lattice Boltzmann-finite difference method is extended by the phase-field approach into a monolithic scheme to study fluid flow and heat transfer through regular arrangements of solid bodies of circular,elliptical and irregular shapes.The advantage of using the phase-field method is demon-strated both in its simplicity of accounting for flow and thermal boundary conditions at solid surfaces with irregular shapes and in the capability of generating such complex-shaped objects.For an array of discs,numerical results for the overall solid-to-gas heat transfer rate are validated via experiments on flow through arrays of hot cylinders.The thus validated compressible LB-FD-PF hybrid scheme is used to study the dependence of heat transfer on flow and thermal boundary conditions(Reynolds number,temperature difference between the hot solid bodies and the inlet gas),porosity as well as on the shape of solid objects.Results are rationalized in terms of the residence time of the gas close to the solid body and downstream variations of gas velocity and temperature.Perspective for further applications of the proposed methodology are also discussed.展开更多
Piezoelectric resonant de-icing systems are attracting great interest.This paper aims to assess the implementation of these systems at the aircraft level.The article begins with the model to compute the power requirem...Piezoelectric resonant de-icing systems are attracting great interest.This paper aims to assess the implementation of these systems at the aircraft level.The article begins with the model to compute the power requirement of a piezoelectric resonant de-icing system sized from the prototype detailed in Part 1/2 of this article.Then the mass,drag,and fuel consumption of this system and the subcomponents needed for its implementation are assessed.The features of a piezoelectric resonant de-icing system are finally computed for aircraft similar to Airbus A320 aircraft and aircraft of different categories(Boeing 787,ATR 72 and TBM 900)and compared with the existing thermal and mechanical ice protection systems.A sensitivity analysis of the main key sizing parameters of the piezoelectric de-icing system is also performed to identify the main axes of improvement for this technology.The study shows the potential of such ice protection systems.In particular,for the realistic input parameters chosen in this work,the electro-mechanical solution can provide a 54% reduction in terms of mass and a 92% reduction in terms of power consumption for an A320 aircraft architecture,leading to a 74% decrease in the associated fuel consumption compared to the actual air bleed system.展开更多
This study investigates the interaction between a premixed methane-air flame and particles inside a model packed bed.The opacity of the spherical packed beds to visible light poses a major barrier to the implementatio...This study investigates the interaction between a premixed methane-air flame and particles inside a model packed bed.The opacity of the spherical packed beds to visible light poses a major barrier to the implementation of highly resolved optical diagnostics,so that no detailed experimental data were so far available for the validation of numerical simulation.Here,a two-dimensional cylindrical packed bed design is set up,which enables direct line-of-sight optical measurements without loss of spatial reso-lution over the fluid region between the particles.In this study,the case of cold metallic cylindrical particles(T=377 K)relevant to start-up of a reactor is investigated using internal particle cooling,which also allows cylinder specific heat transfer rate measurements by differential temperature measurements on the coolant streams.The two dimensional assumption is first verified by measuring the inflow ve-locity and cylinder temperature profile along the cylinders.Chemiluminescence imaging is then per-formed using a telecentric lens to observe the position and geometry of the two-dimensional flame front with respect to the surrounding cylinders without loss of resolution.Simultaneously,the cylinder-specific flame to cylinder heat transfer rates and cylinder surface temperature are measured.As the flame is closely surrounded by the three cooled cylinders,intense heat transfer is observed in this region corresponding to 25±2.5%of the flame thermal power.Flames were stabilised at different positions depending on inflow velocity and equivalence ratio,and a direct correlation between flame to cylinder stand-off distance and the heat transfer rate normalised to the flame thermal power was found for both top and side cylinders.Also,sidewall quenching distances to the curved cylinder surfaces were evaluated,and seem to be influenced by the presence of a warm recirculation zone behind the cylinders.This investigation provides fully resolved flame front position and heat transfer rates for a known geometry and cylinder thermal boundary conditions,and provides validation data for numerical simulations of this high flame particle coupling case.展开更多
Unsteady cloud cavitating flow is detrimental to the efficiency of hydraulic machinery like pumps and propellers due to the resulting side-effects of vibration,noise and erosion damage.Modelling such a unsteady and hi...Unsteady cloud cavitating flow is detrimental to the efficiency of hydraulic machinery like pumps and propellers due to the resulting side-effects of vibration,noise and erosion damage.Modelling such a unsteady and highly turbulent flow remains a challenging issue.In this paper,cloud cavitating flow in a venturi is calculated using the detached eddy simulation(DES)model combined with the Merkle model.The adaptive mesh refinement(AMR)method is employed to speed up the calculation and investigate the mechanisms for vortex development in the venturi.The results indicate the velocity gradients and the generalized fluid element strongly influence the formation of vortices throughout a cavitation cycle.In addition,the cavitation-turbulence coupling is investigated on the local scale by comparing with high-fidelity experimental data and using profile stations.While the AMR calculation is able to predict well the time-averaged velocities and turbulence-related aspects near the throat,it displays discrepancies further downstream owing to a coarser grid refinement downstream and under-performs compared to a traditional grid simulation.Additionally,the AMR calculation is unable to reproduce the cavity width as observed in the experiments.Therefore,while AMR promises to speed the process significantly by refining the grid only in regions of interest,it is comparatively in line with a traditional calculation for cavitating flows.Thus this study intends to provide a reference to employing the AMR as a tool to speed up calculations and be able to simulate turbulence-cavitation interactions accurately.展开更多
Packed bed reactors are commonly found in the process industry,for example in flame-assisted calci-nation for cement production.Understanding the heat transfer inside the bed is essential for process control,product q...Packed bed reactors are commonly found in the process industry,for example in flame-assisted calci-nation for cement production.Understanding the heat transfer inside the bed is essential for process control,product quality and energy efficiency.Here we propose a technique to determine the internal temperature distribution of packed beds based on a combination of lifetime-based phosphor ther-mometry,ray tracing simulations,and assimilation of temperature data using finite element heat transfer simulations.To establish and validate the technique,we considered a reproducible regular packing of 6 mm diameter aluminum spheres,with one of the spheres in the top layer being electrically heated.If a sphere inside the packing is coated with thermographic phosphors and excitation light is directed to-wards the packing,luminescence from the coated sphere exits the packed bed after multiple reflection and the sphere's temperature can be determined.Isothermal measurements showed that the temper-ature obtained by phosphor thermometry is independent of the luminescent sphere location.When imaging the luminescence on a camera,the luminescence distribution in recorded image depended,however,on the position of the sphere.Therefore,in setups with multiple phosphor-coated spheres,their signals can be separated using a least squares fit.We demonstrate the approach using a setup with three luminescent spheres and validated the temperature readings against thermocouple measurements.To obtain the spatial signatures for individual sphere positions required for the least squares fit,ray tracing simulations were used.These provide an efficient alternative to single sphere measurements that are only practical for regular spherical packed beds.Multi-point measurements were used as input to a finite element heat transfer simulations to determine parameters such as particle-to-particle air gap distance.With these,the full temperature distribution inside the bed could be assimilated from the measured values.展开更多
文摘Fiber reinforced titanium matrix composite is considered as a superior material for advanced lightweight aerospace application. Fiber/matrix interfacial reaction has a significant effect on the mechanical properties of the composites. The SCS-6 SiC fiber reinforced Ti-6Al-4V matrix composite was prepared by foil-fiber-foil (FFF) method at ONERA, France. Stripe samples were cut from the as-consolidated composites and sealed in silicon carbide tube. One group of the samples were annealed for 58h at 550°C, 700°C, 850°C and 1000°C, the other group were annealed at 1000°C for 43h, 58h, 80h, lOOh, respectively. The interface investigation indicated that the connection between SiC fiber and the matrix is favorite in the composite. And the interface width for as-consolidated composite is only about 0.8um. The interface width increase with the prolong of annealing time and the increase of annealing temperature. But the increment for the latter is not as high as the former one, which means the annealing time may be the prior factor to influence the interface reaction. The interface width for the composite annealed at 1000°C for lOOh is about 20um. Interface composition of the composite detected by EDX is as follows: Ti 87.58 wt %, V 4.91 wt %, Al 4.06wt%, Si 3.45 wt %.
基金supported by the National Key R&D Program No. 2017YFA0402600the CAS International Partnership Program No. 14A11KYSB20160008the NSFC grant No. 11725313
文摘We briefly review the various proposed scenarios that may lead to nonthermal radio emissions from exoplanetary systems(planetary magnetospheres, magnetosphere-ionosphere and magnetospheresatellite coupling, and star-planet interactions), and the physical information that can be drawn from their detection. The latter scenario is especially favorable to the production of radio emission above 70 MHz. We summarize the results of past and recent radio searches, and then discuss FAST characteristics and observation strategy, including synergies. We emphasize the importance of polarization measurements and a high duty-cycle for the very weak targets that radio-exoplanets prove to be.
文摘This article reviews the instrumental developments accomplished at ONERA in order to perform precise non-intrusive measurements of hypersonic flows using laser- and electron-beam-based optical techniques. Point line of sight and imaging measurements are possible. Point measurements have been implemented with Electron Beam Fluorescence (EBF) using detection of X-ray radiation and Coherent anti-Stokes Raman Scattering (CARS). When spatial resolution is not required, diode laser absorption spectroscopy yields results integrated along a line. EBF imaging using a high energy pulsed electron gun is also quite promising. Rotational and vibrational populations of nitrogen and nitric oxide have been measured in various hypersonic hyperenthalpic facilities, as well as rotational state-resolved velocities in shocks and boundary layers.
基金funded by the project "Research on mechanism of internal energy conversion and hydraulic loss in unsteady flow within hydraulic machines (51876099)"National Key R&D Program of China (2018YFB0905200)+1 种基金National Natural Science Foundation of China (51769035)“Young Scholars” program of Xihua University (Z202042)
文摘This paper presents what should be best practice data reduction procedures for pump performance analysis with emphasis on two-phase inlet flow conditions.This becomes a mandatory step especially when pumps performances are degraded in case of liquid gas mixture at inlet section.Most of following recommendations are based on existing rules that must be recalled for researchers and end users performing centrifugal pump tests and more specifically when comparing the results between each other or/and withCFDapproaches.
基金This work was supported by funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(Grant Agreement No.787539)The research leading to these results is supported by Extreme Light Infrastructure Nuclear Physics(ELI-NP)Phase II a project co-financed by the Romanian Government and European Union through the European Regional Development Fund+1 种基金the Project No.ELI-RO-2020-23 funded by IFA(Romania)This work was also granted access to the HPC resources of MesoPSL financed by the Region Ile de France and the project Equip at Meso(Reference No.ANR-10-EQPX-29-01)of the program Investissements d’Avenir supervised by the National Agency for Research.
文摘Magnetized laser-produced plasmas are central to many studies in laboratory astrophysics,in inertial confinement fusion,and in industrial applications.Here,we present the results of large-scale three-dimensional magnetohydrodynamic simulations of the dynamics of a laser-produced plasma expanding into a transverse magnetic field with a strength of tens of teslas.The simulations show the plasma being confined by the strong magnetic field into a slender slab structured by the magnetized Rayleigh–Taylor instability that develops at the plasma–vacuum interface.We find that when the initial velocity of the plume is perturbed,the slab can develop kink-like motions that disrupt its propagation.
文摘A numerical study of the parameters controlling the viscous penalty method is investigated to better set up Particle-Resolved Direct Numerical Simulations (PR-DNS) of particulate flows. Based on this analysis, improvements of the methods are proposed in order to reach an almost second order convergence in space. The viscous penalty method is validated in Stokes regime by simulating a uniform flow past a fixed isolated cylinder. Moreover, it is also utilized in moderate Reynolds number regime for a uniform flow past a square configuration of cylinder and compared in terms of friction factor to the well-known Ergun correlation.
基金co-supported by the National Natural Science Foundation of China(Nos.62233003 and 62073072)the Key Projects of Key R&D Program of Jiangsu Province,China(Nos.BE2020006 and BE2020006-1)the Shenzhen Science and Technology Program,China(Nos.JCYJ20210324132202005 and JCYJ20220818101206014).
文摘Multi-Source Information Fusion(MSIF),as a comprehensive interdisciplinary field based on modern information technology,has gained significant research value and extensive application prospects in various domains,attracting high attention and interest from scholars,engineering experts,and practitioners worldwide.Despite achieving fruitful results in both theoretical and applied aspects over the past five decades,there remains a lack of comprehensive and systematic review articles that provide an overview of recent development in MSIF.In light of this,this paper aims to assist researchers and individuals interested in gaining a quick understanding of the relevant theoretical techniques and development trends in MSIF,which conducts a statistical analysis of academic reports and related application achievements in the field of MSIF over the past two decades,and provides a brief overview of the relevant theories,methodologies,and application domains,as well as key issues and challenges currently faced.Finally,an analysis and outlook on the future development directions of MSIF are presented.
基金funded by the Deutsche For-schungsgemeinschaft(DFG,German Research Foundation)-422037413-CRC/TRR 287"BULK-REACTION".
文摘A compressible lattice Boltzmann-finite difference method is extended by the phase-field approach into a monolithic scheme to study fluid flow and heat transfer through regular arrangements of solid bodies of circular,elliptical and irregular shapes.The advantage of using the phase-field method is demon-strated both in its simplicity of accounting for flow and thermal boundary conditions at solid surfaces with irregular shapes and in the capability of generating such complex-shaped objects.For an array of discs,numerical results for the overall solid-to-gas heat transfer rate are validated via experiments on flow through arrays of hot cylinders.The thus validated compressible LB-FD-PF hybrid scheme is used to study the dependence of heat transfer on flow and thermal boundary conditions(Reynolds number,temperature difference between the hot solid bodies and the inlet gas),porosity as well as on the shape of solid objects.Results are rationalized in terms of the residence time of the gas close to the solid body and downstream variations of gas velocity and temperature.Perspective for further applications of the proposed methodology are also discussed.
文摘Piezoelectric resonant de-icing systems are attracting great interest.This paper aims to assess the implementation of these systems at the aircraft level.The article begins with the model to compute the power requirement of a piezoelectric resonant de-icing system sized from the prototype detailed in Part 1/2 of this article.Then the mass,drag,and fuel consumption of this system and the subcomponents needed for its implementation are assessed.The features of a piezoelectric resonant de-icing system are finally computed for aircraft similar to Airbus A320 aircraft and aircraft of different categories(Boeing 787,ATR 72 and TBM 900)and compared with the existing thermal and mechanical ice protection systems.A sensitivity analysis of the main key sizing parameters of the piezoelectric de-icing system is also performed to identify the main axes of improvement for this technology.The study shows the potential of such ice protection systems.In particular,for the realistic input parameters chosen in this work,the electro-mechanical solution can provide a 54% reduction in terms of mass and a 92% reduction in terms of power consumption for an A320 aircraft architecture,leading to a 74% decrease in the associated fuel consumption compared to the actual air bleed system.
基金funding by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-Project-ID 422037413-TRR 287 and the technical support of Mr.Chinmay Laxminarayan Hegde in performing experiments in the lab.We are also greateful for the fruitful discussions with Gunar Boye,Seyed Ali Hosseini,Dominique Thevenin and Katharina Zahringer.
文摘This study investigates the interaction between a premixed methane-air flame and particles inside a model packed bed.The opacity of the spherical packed beds to visible light poses a major barrier to the implementation of highly resolved optical diagnostics,so that no detailed experimental data were so far available for the validation of numerical simulation.Here,a two-dimensional cylindrical packed bed design is set up,which enables direct line-of-sight optical measurements without loss of spatial reso-lution over the fluid region between the particles.In this study,the case of cold metallic cylindrical particles(T=377 K)relevant to start-up of a reactor is investigated using internal particle cooling,which also allows cylinder specific heat transfer rate measurements by differential temperature measurements on the coolant streams.The two dimensional assumption is first verified by measuring the inflow ve-locity and cylinder temperature profile along the cylinders.Chemiluminescence imaging is then per-formed using a telecentric lens to observe the position and geometry of the two-dimensional flame front with respect to the surrounding cylinders without loss of resolution.Simultaneously,the cylinder-specific flame to cylinder heat transfer rates and cylinder surface temperature are measured.As the flame is closely surrounded by the three cooled cylinders,intense heat transfer is observed in this region corresponding to 25±2.5%of the flame thermal power.Flames were stabilised at different positions depending on inflow velocity and equivalence ratio,and a direct correlation between flame to cylinder stand-off distance and the heat transfer rate normalised to the flame thermal power was found for both top and side cylinders.Also,sidewall quenching distances to the curved cylinder surfaces were evaluated,and seem to be influenced by the presence of a warm recirculation zone behind the cylinders.This investigation provides fully resolved flame front position and heat transfer rates for a known geometry and cylinder thermal boundary conditions,and provides validation data for numerical simulations of this high flame particle coupling case.
基金supported by the Office of Naval Research,USA(Grant No.N00014-18-S-B001)the Macao Young Scholars Program(Grant No.AM2022003)the Priority Postdoctoral Projects in Zhejiang Province(Grant No.341781).
文摘Unsteady cloud cavitating flow is detrimental to the efficiency of hydraulic machinery like pumps and propellers due to the resulting side-effects of vibration,noise and erosion damage.Modelling such a unsteady and highly turbulent flow remains a challenging issue.In this paper,cloud cavitating flow in a venturi is calculated using the detached eddy simulation(DES)model combined with the Merkle model.The adaptive mesh refinement(AMR)method is employed to speed up the calculation and investigate the mechanisms for vortex development in the venturi.The results indicate the velocity gradients and the generalized fluid element strongly influence the formation of vortices throughout a cavitation cycle.In addition,the cavitation-turbulence coupling is investigated on the local scale by comparing with high-fidelity experimental data and using profile stations.While the AMR calculation is able to predict well the time-averaged velocities and turbulence-related aspects near the throat,it displays discrepancies further downstream owing to a coarser grid refinement downstream and under-performs compared to a traditional grid simulation.Additionally,the AMR calculation is unable to reproduce the cavity width as observed in the experiments.Therefore,while AMR promises to speed the process significantly by refining the grid only in regions of interest,it is comparatively in line with a traditional calculation for cavitating flows.Thus this study intends to provide a reference to employing the AMR as a tool to speed up calculations and be able to simulate turbulence-cavitation interactions accurately.
基金funding by the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)-Project-ID 422037413-TRR 287.
文摘Packed bed reactors are commonly found in the process industry,for example in flame-assisted calci-nation for cement production.Understanding the heat transfer inside the bed is essential for process control,product quality and energy efficiency.Here we propose a technique to determine the internal temperature distribution of packed beds based on a combination of lifetime-based phosphor ther-mometry,ray tracing simulations,and assimilation of temperature data using finite element heat transfer simulations.To establish and validate the technique,we considered a reproducible regular packing of 6 mm diameter aluminum spheres,with one of the spheres in the top layer being electrically heated.If a sphere inside the packing is coated with thermographic phosphors and excitation light is directed to-wards the packing,luminescence from the coated sphere exits the packed bed after multiple reflection and the sphere's temperature can be determined.Isothermal measurements showed that the temper-ature obtained by phosphor thermometry is independent of the luminescent sphere location.When imaging the luminescence on a camera,the luminescence distribution in recorded image depended,however,on the position of the sphere.Therefore,in setups with multiple phosphor-coated spheres,their signals can be separated using a least squares fit.We demonstrate the approach using a setup with three luminescent spheres and validated the temperature readings against thermocouple measurements.To obtain the spatial signatures for individual sphere positions required for the least squares fit,ray tracing simulations were used.These provide an efficient alternative to single sphere measurements that are only practical for regular spherical packed beds.Multi-point measurements were used as input to a finite element heat transfer simulations to determine parameters such as particle-to-particle air gap distance.With these,the full temperature distribution inside the bed could be assimilated from the measured values.