Many sources are brought together in scholarship in order to write the linear story of a specific tax,the half shekel tax paid each year by the Jews to the Temple of Jerusalem and,then,confiscated by the fiscus Iudaic...Many sources are brought together in scholarship in order to write the linear story of a specific tax,the half shekel tax paid each year by the Jews to the Temple of Jerusalem and,then,confiscated by the fiscus Iudaicus in Roman times.But do these sources refer to the same tax?In this paper,I defend the idea that the linearity of this story is a fiction.Many taxes were levied and justified by the memory of a Biblical tax,but they are all different in meaning,in administration and sometimes even in value.The story is a political one:how to justify a tax in ancient Judaism?展开更多
Our community currently deals with issues such as rising electricity costs,pollution,and global warming.Scientists work to improve energy harvesting-based power generators in order to reduce their impacts.The Seebeck ...Our community currently deals with issues such as rising electricity costs,pollution,and global warming.Scientists work to improve energy harvesting-based power generators in order to reduce their impacts.The Seebeck effect has been used to illustrate the capacity of thermoelectric generators(TEGs)to directly convert thermal energy to electrical energy.They are also ecologically beneficial since they do not include chemical products,function quietly because they lack mechanical structures and/or moving components,and may be built using different fabrication technologies such as three-dimentional(3D)printing,silicon technology,and screen printing,etc.TEGs are also position-independent and have a long operational lifetime.TEGs can be integrated into bulk and flexible devices.This review gives further investigation of TEGs,beginning with a full discussion of their operating principle,kinds,materials utilized,figure of merit,and improvement approaches,which include various thermoelectric material arrangements and utilised technologies.This paper also discusses the use of TEGs in a variety of disciplines such as automobile and biomedical.展开更多
Nitrate from the application of nitrogen-based fertilizers in intensive agriculture is a notorious waste product, though it lacks cost-effective solutions for its removal from potential drinking water resources. Catal...Nitrate from the application of nitrogen-based fertilizers in intensive agriculture is a notorious waste product, though it lacks cost-effective solutions for its removal from potential drinking water resources. Catalytic reduction appears to be a promising technique for converting nitrates to benign nitrogen gas. Mesoporous silica SBA-15 is a frequently used catalyst support that has large surface areas and highly ordered nanopores. In this work, mesoporous silica SBA-15 bimetallic catalysts for nitrate reduction were investigated. The catalyst was optimized for the selection of promoter metal (Sn and Cu), noble metal (Pd and Pt) and loading ratios of these metals at different temperatures and reduction conditions. The catalysts prepared were characterized by FT-IR, N2 physisorption, XRD, SEM, and ICP. All catalysts showed the presence of cylindrical mesoporous channels and uniform pore structures that remained even after metals loading. In the presence of a CO<sub>2</sub> buffer, the catalysts 4Pd-1Cu/SBA-15 and 1Pt-1Cu/SBA-15 reduced at 100?C under H2 and 1Pd-1Cu/SBA-15 reduced at 200°C under H2 demonstrated very high nitrate conversion. Furthermore, the forementioned Pd catalysts had higher N2 selectivity (88% - 87%) compared to Pt catalyst (80%). Nitrate conversion by the 4Pd-1Cu/SBA-15 catalyst was significantly decreased to 81% in the absence of CO<sub>2</sub>.展开更多
Many applications in fluid mechanics require the numerical solution of sequences of linear systems typically issued from finite element discretization of the Navier-Stokes equations. The resulting matrices then exhibi...Many applications in fluid mechanics require the numerical solution of sequences of linear systems typically issued from finite element discretization of the Navier-Stokes equations. The resulting matrices then exhibit a saddle point structure. To achieve this task, a Newton-based root-finding algorithm is usually employed which in turn necessitates to solve a saddle point system at every Newton iteration. The involved linear systems being large scale and ill-conditioned, effective linear solvers must be implemented. Here, we develop and test several methods for solving the saddle point systems, considering in particular the LU factorization, as direct approach, and the preconditioned generalized minimal residual (ΡGMRES) solver, an iterative approach. We apply the various solvers within the root-finding algorithm for Flow over backward facing step systems. The particularity of Flow over backward facing step system is an interesting case for studying the performance and solution strategy of a turbulence model. In this case, the flow is subjected to a sudden increase of cross-sectional area, resulting in a separation of flow starting at the point of expansion, making the system of differential equations particularly stiff. We assess the performance of the direct and iterative solvers in terms of computational time, numbers of Newton iterations and time steps.展开更多
Despite exploration and production success in Niger Delta,several failed wells have been encountered due to overpressures.Hence,it is very essential to understand the spatial distribution of pore pressure and the gene...Despite exploration and production success in Niger Delta,several failed wells have been encountered due to overpressures.Hence,it is very essential to understand the spatial distribution of pore pressure and the generating mechanisms in order to mitigate the pitfalls that might arise during drilling.This research provides estimates of pore pressure along three offshore wells using the Eaton's transit time method,multi-layer perceptron artificial neural network(MLP-ANN)and random forest regression(RFR)algorithms.Our results show that there are three pressure magnitude regimes:normal pressure zone(hydrostatic pressure),transition pressure zone(slightly above hydrostatic pressure),and over pressured zone(significantly above hydrostatic pressure).The top of the geopressured zone(2873 mbRT or 9425.853 ft)averagely marks the onset of overpressurization with the excess pore pressure above hydrostatic pressure(P∗)varying averagely along the three wells between 1.06−24.75 MPa.The results from the three methods are self-consistent with strong correlation between the Eaton's method and the two machine learning models.The models have high accuracy of about>97%,low mean absolute percentage error(MAPE<3%)and coefficient of determination(R2>0.98).Our results have also shown that the principal generating mechanisms responsible for high pore pressure in the offshore Niger Delta are disequilibrium compaction,unloading(fluid expansion)and shale diagenesis.展开更多
文摘Many sources are brought together in scholarship in order to write the linear story of a specific tax,the half shekel tax paid each year by the Jews to the Temple of Jerusalem and,then,confiscated by the fiscus Iudaicus in Roman times.But do these sources refer to the same tax?In this paper,I defend the idea that the linearity of this story is a fiction.Many taxes were levied and justified by the memory of a Biblical tax,but they are all different in meaning,in administration and sometimes even in value.The story is a political one:how to justify a tax in ancient Judaism?
文摘Our community currently deals with issues such as rising electricity costs,pollution,and global warming.Scientists work to improve energy harvesting-based power generators in order to reduce their impacts.The Seebeck effect has been used to illustrate the capacity of thermoelectric generators(TEGs)to directly convert thermal energy to electrical energy.They are also ecologically beneficial since they do not include chemical products,function quietly because they lack mechanical structures and/or moving components,and may be built using different fabrication technologies such as three-dimentional(3D)printing,silicon technology,and screen printing,etc.TEGs are also position-independent and have a long operational lifetime.TEGs can be integrated into bulk and flexible devices.This review gives further investigation of TEGs,beginning with a full discussion of their operating principle,kinds,materials utilized,figure of merit,and improvement approaches,which include various thermoelectric material arrangements and utilised technologies.This paper also discusses the use of TEGs in a variety of disciplines such as automobile and biomedical.
文摘Nitrate from the application of nitrogen-based fertilizers in intensive agriculture is a notorious waste product, though it lacks cost-effective solutions for its removal from potential drinking water resources. Catalytic reduction appears to be a promising technique for converting nitrates to benign nitrogen gas. Mesoporous silica SBA-15 is a frequently used catalyst support that has large surface areas and highly ordered nanopores. In this work, mesoporous silica SBA-15 bimetallic catalysts for nitrate reduction were investigated. The catalyst was optimized for the selection of promoter metal (Sn and Cu), noble metal (Pd and Pt) and loading ratios of these metals at different temperatures and reduction conditions. The catalysts prepared were characterized by FT-IR, N2 physisorption, XRD, SEM, and ICP. All catalysts showed the presence of cylindrical mesoporous channels and uniform pore structures that remained even after metals loading. In the presence of a CO<sub>2</sub> buffer, the catalysts 4Pd-1Cu/SBA-15 and 1Pt-1Cu/SBA-15 reduced at 100?C under H2 and 1Pd-1Cu/SBA-15 reduced at 200°C under H2 demonstrated very high nitrate conversion. Furthermore, the forementioned Pd catalysts had higher N2 selectivity (88% - 87%) compared to Pt catalyst (80%). Nitrate conversion by the 4Pd-1Cu/SBA-15 catalyst was significantly decreased to 81% in the absence of CO<sub>2</sub>.
文摘Many applications in fluid mechanics require the numerical solution of sequences of linear systems typically issued from finite element discretization of the Navier-Stokes equations. The resulting matrices then exhibit a saddle point structure. To achieve this task, a Newton-based root-finding algorithm is usually employed which in turn necessitates to solve a saddle point system at every Newton iteration. The involved linear systems being large scale and ill-conditioned, effective linear solvers must be implemented. Here, we develop and test several methods for solving the saddle point systems, considering in particular the LU factorization, as direct approach, and the preconditioned generalized minimal residual (ΡGMRES) solver, an iterative approach. We apply the various solvers within the root-finding algorithm for Flow over backward facing step systems. The particularity of Flow over backward facing step system is an interesting case for studying the performance and solution strategy of a turbulence model. In this case, the flow is subjected to a sudden increase of cross-sectional area, resulting in a separation of flow starting at the point of expansion, making the system of differential equations particularly stiff. We assess the performance of the direct and iterative solvers in terms of computational time, numbers of Newton iterations and time steps.
文摘Despite exploration and production success in Niger Delta,several failed wells have been encountered due to overpressures.Hence,it is very essential to understand the spatial distribution of pore pressure and the generating mechanisms in order to mitigate the pitfalls that might arise during drilling.This research provides estimates of pore pressure along three offshore wells using the Eaton's transit time method,multi-layer perceptron artificial neural network(MLP-ANN)and random forest regression(RFR)algorithms.Our results show that there are three pressure magnitude regimes:normal pressure zone(hydrostatic pressure),transition pressure zone(slightly above hydrostatic pressure),and over pressured zone(significantly above hydrostatic pressure).The top of the geopressured zone(2873 mbRT or 9425.853 ft)averagely marks the onset of overpressurization with the excess pore pressure above hydrostatic pressure(P∗)varying averagely along the three wells between 1.06−24.75 MPa.The results from the three methods are self-consistent with strong correlation between the Eaton's method and the two machine learning models.The models have high accuracy of about>97%,low mean absolute percentage error(MAPE<3%)and coefficient of determination(R2>0.98).Our results have also shown that the principal generating mechanisms responsible for high pore pressure in the offshore Niger Delta are disequilibrium compaction,unloading(fluid expansion)and shale diagenesis.