The breast cancer is the most common cause of cancer death in women. To establish an early stage in situ imaging of breast cancer cells, green quantum dots (QDs) are used as a fluorescent signal generator. The QDs b...The breast cancer is the most common cause of cancer death in women. To establish an early stage in situ imaging of breast cancer cells, green quantum dots (QDs) are used as a fluorescent signal generator. The QDs based imaging of breast cancer cells involves anti-HER2/neu antibody for labeling the over expressed HER2 on the surface of breast cancer cells. The complete assay involves breast cancer cells, biotin labeled antibody and streptavidin conjugated QDs. The breast cancer cells are grown in culture plates and exposed to the biotin labeled antibodies, and then exposed to streptavidin labeled QDs to utilize the strong and stable biotin-streptavidin interaction. Fluorescent images of the complete assay for breast cancer cells are evaluated on a microscope with a UV light source. Results show that the breast cancer cells in the complete assay are used as fluorescent cells with brighter signals compared with those labeled by the organic dye using similar parameters and the same number of cells.展开更多
Objective Corynebacterium crenatum MT, a mutant from C. crenatum AS 1.542 with a lethal argR gene, exhibits high arginine production. To confirm the effect of ArgR on arginine biosynthesis in C. crenatum, an intact ar...Objective Corynebacterium crenatum MT, a mutant from C. crenatum AS 1.542 with a lethal argR gene, exhibits high arginine production. To confirm the effect of ArgR on arginine biosynthesis in C. crenatum, an intact argR gene from wild-type AS 1.542 was introduced into C. crenatum MT, resulting in C. crenatum MT. sp, and the changes of transcriptional levels of the arginine biosynthetic genes and arginine production were compared between the mutant strain and the recombinant strain. Methods Quantitative real-time polymerase chain reaction was employed to analyze the changes of the related genes at the transcriptional level, electrophoretic mobility shift assays were used to determine ArgR binding with the argCJBDF, argGH, and carAB promoter regions, and arginine production was determined with an automated amino acid analyzer. Results Arginine production assays showed a 69.9% reduction in arginine from 9.01±0.22 mg/mL in C. crenatum MT to 2.71±0.13 mg/mL (P〈0.05) in C. crenatum MT. sp. The argC, argB, argD, argF, argJ, argG, and carA genes were down-regulated significantly in C. crenatum MT. sp compared with those in its parental C. crenatum MT strain. The electrophoretic mobility shift assays showed that the promoter regions were directly bound to the ArgR protein. Conclusion The arginine biosynthetic genes in C crenatum are clearly controlled by the regulator ArgR, and intact ArgR in C. crenatum MT results in a significant descrease in production. negative arginine production.展开更多
The presence of a strong, changing, randomly-oriented, local electric field, which is induced by the photo-ionization that occurs universally in colloidal semiconductor quantum dots (QDs), makes it difficult to obse...The presence of a strong, changing, randomly-oriented, local electric field, which is induced by the photo-ionization that occurs universally in colloidal semiconductor quantum dots (QDs), makes it difficult to observe the quantum-confined Stark effect in ensemble of colloidal QDs. We propose a way to inhibit such a random electric field, and a clear quantum-confined Stark shift is observed directly in close-packed colloidal QDs. Besides the applications in optical switches and modulators, our experimental results indicate how the oscillator strengths of the optical transitions axe changed under external electric fields.展开更多
A novel way of producing superhydrophobic surfaces by applying a self-assembled monolayer(SAM)to silicon micro/nano-textured surfaces is presented in this paper.The micro/nano-textured surfaces on silicon substrates w...A novel way of producing superhydrophobic surfaces by applying a self-assembled monolayer(SAM)to silicon micro/nano-textured surfaces is presented in this paper.The micro/nano-textured surfaces on silicon substrates were generated by the aluminum-induced crystallization(AIC)of amorphous silicon(a-Si)technique.Octadecyltrichlorosilane(OTS)SAMs were then applied to the textured surfaces by dip coating.The topography and wetting properties of the resulting surfaces were characterized using scanning electron microscopy(SEM)and a video-based contact angle measurement system.The results show that by introducing OTS SAMs on the silicon micro/nano-textured surfaces,superhydrophobic surfaces with water contact angles(WCAs)of 155°were obtained,as compared to the WCAs of OTS-modified smooth silicon surfaces of about 112°.Surface topography was found to directly influence the WCA as predicted by the Cassie-Baxter model.展开更多
Quantum dots (QD) nanoparticles have been widely used in biomedical and electronics fields, because of their novel optical properties. Consequently it confers enormous potential for human exposure and environmental ...Quantum dots (QD) nanoparticles have been widely used in biomedical and electronics fields, because of their novel optical properties. Consequently it confers enormous potential for human exposure and environmental release. To increase the biocompatibility of QDs, a variety of surface coatings or functional groups are added to increase their bioactivity and water solubility. Human adult low calcium high temperature (HaCaT) cells are the epithelial cells derived from adult human skin that exhibits normal differentiation capacity and a DNA fingerprint pattern that is unaffected by long-term cultivation, transformation, or the presence of multiple chromosomal alternations. Human keratinocytes, HaCaT cells were used to systematically evaluate the cytotoxicity of biocompatible QD made of CdSe metal core and ZnS shell with three different coatings and at three different wavelengths (530, 580 and 620 nm). In terms of half- maximal inhibitory concentration, QSA-QDs with amine-polyethyleneglycol coating and QSH-QDs with amphiphilic polymer coating were not cytotoxic, while QEI-QDs with polyethylenimine coating were highly toxic to the HaCaT cells in comparison to a reference CulnS2/ZnS. QEI-QDs led to significant increase in reactive oxygen species, decrease in mitochondrial membrane potential and DNA damage in HaCaT cells. The mechanisms of toxicity of QEI-530 and QEI-580 can be attributed to the combination of intracellular reactive oxygen species production and loss of MMP. The QDs toxicity can be attributed to the polyethylemimine surface coating which was highly toxic to cells in comparison with amine-polyethyleneglycol, but not due to the release of cadmium ions.展开更多
We report the application of a versatile diblock copolymer,poly(ethylene oxide)-b-poly(γ-methacryloxypropyl trimethoxysilane)(PEO-b-PγMPS),to prepare nanocrystals such as iron oxide nanoparticles or quantum dots,wit...We report the application of a versatile diblock copolymer,poly(ethylene oxide)-b-poly(γ-methacryloxypropyl trimethoxysilane)(PEO-b-PγMPS),to prepare nanocrystals such as iron oxide nanoparticles or quantum dots,with either a single core or multi-core cluster,for biomedical applications.This amphiphilic copolymer comprises both a hydrophilic PEO segment and a hydrophobic segment with a“surface anchoring moiety”(the silane group)which can interact effectively with the hydrophobic nanocrystals through ligand exchange.One of the unique features of this work is that we can control the formation of either single core nanoparticles or multi-core nanoclusters by simply varying the conditions of ligand exchange and aging of the mixture of block copolymer and nanoparticles without needing to change the copolymer.The morphologies of the resulting single core nanoparticles or multi-core nanoclusters were confirmed by dynamic light scattering and transmission electron microscopy.The clustered nanoparticles exhibit enhanced physicochemical properties that are beyond those expected from a simple accumulation of individual nanoparticles.Additionally,the hybrid nanoparticles containing both magnetic iron oxide nanoparticles and optical quantum dots obtained using our strategy provide have combined magnetic and optical functionalities that allow for potential new and expanded biomedical applications,as demonstrated by their use for magnetic resonance imaging and biomarker-targeted cell imaging.展开更多
基金Supported by the Foundation for Cultivating the Excellent Doctoral Dissertation of Jiangxi Province of China (YBP08A03)~~
文摘The breast cancer is the most common cause of cancer death in women. To establish an early stage in situ imaging of breast cancer cells, green quantum dots (QDs) are used as a fluorescent signal generator. The QDs based imaging of breast cancer cells involves anti-HER2/neu antibody for labeling the over expressed HER2 on the surface of breast cancer cells. The complete assay involves breast cancer cells, biotin labeled antibody and streptavidin conjugated QDs. The breast cancer cells are grown in culture plates and exposed to the biotin labeled antibodies, and then exposed to streptavidin labeled QDs to utilize the strong and stable biotin-streptavidin interaction. Fluorescent images of the complete assay for breast cancer cells are evaluated on a microscope with a UV light source. Results show that the breast cancer cells in the complete assay are used as fluorescent cells with brighter signals compared with those labeled by the organic dye using similar parameters and the same number of cells.
基金supported by Natural Science Foundation of China,No.1360219 and No.30960012
文摘Objective Corynebacterium crenatum MT, a mutant from C. crenatum AS 1.542 with a lethal argR gene, exhibits high arginine production. To confirm the effect of ArgR on arginine biosynthesis in C. crenatum, an intact argR gene from wild-type AS 1.542 was introduced into C. crenatum MT, resulting in C. crenatum MT. sp, and the changes of transcriptional levels of the arginine biosynthetic genes and arginine production were compared between the mutant strain and the recombinant strain. Methods Quantitative real-time polymerase chain reaction was employed to analyze the changes of the related genes at the transcriptional level, electrophoretic mobility shift assays were used to determine ArgR binding with the argCJBDF, argGH, and carAB promoter regions, and arginine production was determined with an automated amino acid analyzer. Results Arginine production assays showed a 69.9% reduction in arginine from 9.01±0.22 mg/mL in C. crenatum MT to 2.71±0.13 mg/mL (P〈0.05) in C. crenatum MT. sp. The argC, argB, argD, argF, argJ, argG, and carA genes were down-regulated significantly in C. crenatum MT. sp compared with those in its parental C. crenatum MT strain. The electrophoretic mobility shift assays showed that the promoter regions were directly bound to the ArgR protein. Conclusion The arginine biosynthetic genes in C crenatum are clearly controlled by the regulator ArgR, and intact ArgR in C. crenatum MT results in a significant descrease in production. negative arginine production.
基金Supported by the National Natural Science Foundation of China under Grant No 10774023.
文摘The presence of a strong, changing, randomly-oriented, local electric field, which is induced by the photo-ionization that occurs universally in colloidal semiconductor quantum dots (QDs), makes it difficult to observe the quantum-confined Stark effect in ensemble of colloidal QDs. We propose a way to inhibit such a random electric field, and a clear quantum-confined Stark shift is observed directly in close-packed colloidal QDs. Besides the applications in optical switches and modulators, our experimental results indicate how the oscillator strengths of the optical transitions axe changed under external electric fields.
基金This material is based on work supported by the US National Science Foundation under Grant Nos.CMMI-0600642 and CMMI-0645040.
文摘A novel way of producing superhydrophobic surfaces by applying a self-assembled monolayer(SAM)to silicon micro/nano-textured surfaces is presented in this paper.The micro/nano-textured surfaces on silicon substrates were generated by the aluminum-induced crystallization(AIC)of amorphous silicon(a-Si)technique.Octadecyltrichlorosilane(OTS)SAMs were then applied to the textured surfaces by dip coating.The topography and wetting properties of the resulting surfaces were characterized using scanning electron microscopy(SEM)and a video-based contact angle measurement system.The results show that by introducing OTS SAMs on the silicon micro/nano-textured surfaces,superhydrophobic surfaces with water contact angles(WCAs)of 155°were obtained,as compared to the WCAs of OTS-modified smooth silicon surfaces of about 112°.Surface topography was found to directly influence the WCA as predicted by the Cassie-Baxter model.
基金supported by NSF-SBIR grant #IIP-0823040 and NSF-CREST program with grant #HRD-0833178
文摘Quantum dots (QD) nanoparticles have been widely used in biomedical and electronics fields, because of their novel optical properties. Consequently it confers enormous potential for human exposure and environmental release. To increase the biocompatibility of QDs, a variety of surface coatings or functional groups are added to increase their bioactivity and water solubility. Human adult low calcium high temperature (HaCaT) cells are the epithelial cells derived from adult human skin that exhibits normal differentiation capacity and a DNA fingerprint pattern that is unaffected by long-term cultivation, transformation, or the presence of multiple chromosomal alternations. Human keratinocytes, HaCaT cells were used to systematically evaluate the cytotoxicity of biocompatible QD made of CdSe metal core and ZnS shell with three different coatings and at three different wavelengths (530, 580 and 620 nm). In terms of half- maximal inhibitory concentration, QSA-QDs with amine-polyethyleneglycol coating and QSH-QDs with amphiphilic polymer coating were not cytotoxic, while QEI-QDs with polyethylenimine coating were highly toxic to the HaCaT cells in comparison to a reference CulnS2/ZnS. QEI-QDs led to significant increase in reactive oxygen species, decrease in mitochondrial membrane potential and DNA damage in HaCaT cells. The mechanisms of toxicity of QEI-530 and QEI-580 can be attributed to the combination of intracellular reactive oxygen species production and loss of MMP. The QDs toxicity can be attributed to the polyethylemimine surface coating which was highly toxic to cells in comparison with amine-polyethyleneglycol, but not due to the release of cadmium ions.
基金work is supported in part by the Emory Molecular Translational Imaging Center with an in vivo Cellular and Molecular Imaging Center grant(ICMIC,No.P50CA128301-01A10003)from the National Cancer Institute(NCI)the Emory-Georgia Tech Nanotechnology Center for Personalized and Predictive Oncology with a grant from the Center of Cancer Nanotechnology Excellence(CCNE,No.U54CA119338-01)from NCI and a research grant from EmTech Bio,Inc.
文摘We report the application of a versatile diblock copolymer,poly(ethylene oxide)-b-poly(γ-methacryloxypropyl trimethoxysilane)(PEO-b-PγMPS),to prepare nanocrystals such as iron oxide nanoparticles or quantum dots,with either a single core or multi-core cluster,for biomedical applications.This amphiphilic copolymer comprises both a hydrophilic PEO segment and a hydrophobic segment with a“surface anchoring moiety”(the silane group)which can interact effectively with the hydrophobic nanocrystals through ligand exchange.One of the unique features of this work is that we can control the formation of either single core nanoparticles or multi-core nanoclusters by simply varying the conditions of ligand exchange and aging of the mixture of block copolymer and nanoparticles without needing to change the copolymer.The morphologies of the resulting single core nanoparticles or multi-core nanoclusters were confirmed by dynamic light scattering and transmission electron microscopy.The clustered nanoparticles exhibit enhanced physicochemical properties that are beyond those expected from a simple accumulation of individual nanoparticles.Additionally,the hybrid nanoparticles containing both magnetic iron oxide nanoparticles and optical quantum dots obtained using our strategy provide have combined magnetic and optical functionalities that allow for potential new and expanded biomedical applications,as demonstrated by their use for magnetic resonance imaging and biomarker-targeted cell imaging.