Peanut or groundnut ( Arachis hypogaea L. ) is an important source of vegetable oil in the world. Genetic enhancement for high yield and high oil content has greatly contributed to enhanced pro-ductivit...Peanut or groundnut ( Arachis hypogaea L. ) is an important source of vegetable oil in the world. Genetic enhancement for high yield and high oil content has greatly contributed to enhanced pro-ductivity of peanut and increased supply of peanut oil. Further improving oil content and quality of peanut is still crucial for increasing productivity of arable land and market competitiveness of peanut oil. Based on investigation among the peanut germplasm accessions including wild Arachis species, the oil content could be as high as 65%. Heterosis has been observed for oil content in hybrids derived from diverse crossing parents. Segregates with enhanced oil content have been obtained by pyramiding different genes or alleles with major and minor additive effects. Improved testing techniques for oil content in breeding lines with reduced cost have accelerated breeding progress for high oil content. SSR markers associated with oil content have been identified by association and linkage analysis. The stability of oil content in peanut across seasons and locations is highly associated with cold tolerance, high nutrition efficiency and drought tolerance. Recent progress on improving fatty acids in particular marker assisted backcrossing breeding has contributed to higher quality peanut oil and other products. High oil peanut lines with im-proved resistance to aflatoxin production have been developed. The wild Arachis species would be of great value for peanut breeding in increasing oil content.展开更多
Flaxseed oil(FSO)rich in n-3 polyunsaturated fatty acids(PUFAs)can protect against obesity and insulin resistance,but the underlying mechanism is unknown.An integrative multiomics of the microbiome and targeted metab ...Flaxseed oil(FSO)rich in n-3 polyunsaturated fatty acids(PUFAs)can protect against obesity and insulin resistance,but the underlying mechanism is unknown.An integrative multiomics of the microbiome and targeted metab olomics approach was performed to investigate the possible pathway for flaxseed oil supplementation on reducing serum total cholesterol,triglyceride and epididymal adipose in high-fat diet mice.FSO ameliorated the gut microbial dysbiosis by increasing the community diversity and the abundance of Clostridiales and Ruminococcaceae.These effects were associated with the regulation of bile acid(BAs)in the feces.FSO reduced the concentrations of conjugated BAs,such as cholic acid,tauro-α-murocholic acid,and tauro-ursodesoxycholic acid in feces,which in turn inhibit the intestinal farnesoid X receptor(FXR)-fibroblast growth factor(FGF)15 signaling pathway.Further analysis revealed that FSO activated FXR in the liver and regulated downstream gene expression(SHP,SREBP-1c,and CPT-1a),which promoted lipolysis and inhibited lipogenesis.The results of this study suggest that FSO modulates serum lipid concentrations by regulating the gut microbiota,FXR-FGF15 signaling and BA metabolism.展开更多
The optimal process conditions for solvent-free microwave extraction(SFME)of essential oils from Cinnamomum longepaniculatum deciduous leaves after moisture conditioning were established by response surface methodolog...The optimal process conditions for solvent-free microwave extraction(SFME)of essential oils from Cinnamomum longepaniculatum deciduous leaves after moisture conditioning were established by response surface methodology(RSM).A Box-Behnken design(BBD)was applied to evaluate the effects of three independent variables:moisture content(A:54%–74%),microwave power(B:300–500 W)and microwave time(C:20–40 min),on the extraction yield of essential oil.The compounds of the essential oils obtained by SFME,hydro-distillation and microwaveassisted hydro-distillation(MADE)were identified by gas chromatography-mass spectrometry(GC-MS),and the total lipids of C.longepaniculatum fresh leaves and deciduous leaves were analyzed.The correlation analysis of the response regression model indicated that quadratic polynomial model could be employed to optimize the extraction of essential oil.The optimal extraction condition was A:58%,B:400 W and C:28 min.In the optimal condition,the maximum extraction yield was 4.475 mL/100 g dw and higher than that by MADE.The main compound of the essential oil was eucalyptol(63.54%),and total oxygenated compounds was 78.95%,mainly caused by SFME and the metabolism of endophytic bacteria with decreasing content of phospholipids and fatty acids.Analysis of variance under the extraction condition illustrated high fitness of the model and the success of RSM for optimizing and reflecting the expected process condition.SFME combined with moisture regulation was an effective method for extracting essential oil from C.longepaniculatum deciduous leaves.展开更多
The origin traceability of edible oil is an effective way to protect the legitimate rights and interests of producers and consumers.This review briefly summarizes research progress on origin traceability technologies ...The origin traceability of edible oil is an effective way to protect the legitimate rights and interests of producers and consumers.This review briefly summarizes research progress on origin traceability technologies for edible oils including stable isotope ratio mass spectrometry,mineral element fingerprint analysis,organic component fingerprint analysis,near-infrared spectroscopy,nuclear magnetic resonance technology and biochemical analysis.Moreover,the development trends in edible oil origin traceability technology were proposed.展开更多
Vegetable oil and derivative,as well as waste cooking oil,are important resources for microbial fermentation to produce high-value-added metabolites.Diversity of their compositions not only provides more choices for t...Vegetable oil and derivative,as well as waste cooking oil,are important resources for microbial fermentation to produce high-value-added metabolites.Diversity of their compositions not only provides more choices for the fermentation by different microorganisms,but also is a challenge for their systematic utilization.According to the previous literature,4 main functions of vegetable oil and derivative can be summarized,such as carbon source,precursor,inducer and cell protectant during fermentation process.Currently,there is still insufficient knowledge about application of vegetable oil and derivative for high-value-added metabolite production.Therefore,this article firstly presented a comprehensive summary of compositions of vegetable oils and their derivatives,variety of corresponding microbial metabolites,limiting factors and optimization of fermentation process.展开更多
Oilseed rape(Brassica napus L.) is an allotetraploid(AACC,2n=38) crop,valued for its edible oil and protein content.seed yield and nutritional composition of rapeseed are influenced by its yield and oil quality traits...Oilseed rape(Brassica napus L.) is an allotetraploid(AACC,2n=38) crop,valued for its edible oil and protein content.seed yield and nutritional composition of rapeseed are influenced by its yield and oil quality traits.However,the genetic basis of yield-related and oil-quality traits remain ambiguous.A panel of 266 diversified oilseed rape accessions was genotyped using 223 simple sequence repeat(SSR) markers covering all 19 chromosomes to identify significant markers associated with yield and quality traits.Twelve yield-related and six quality traits were investigated in two consecutive years(2014 and 2015),with three replications in two environments(Changshun,CS;and Qinghe,QH).Using the model GLM with population structure and kinship(Q+K),a total of 25 significant SSR markers(P <0.001) were detected to be associated with these twelve yield-related and six quality traits,explaining 4.56%-19.17% of the phenotypic variation for each trait.Based on these markers,BnaA03g23490D, BnaC09g46370D,BnaA07g37150D,BnaA01g32590D, and BnaC09g37280D were identified as pleiotropic genes controlling multiple traits.These candidate genes illustrated the potential for the genetic understanding of yield and oil quality traits.Most importantly,these significant markers can be used for marker-assisted breeding of oilseed rape in different environments.展开更多
Oil from Camellia oleifera Abel. seed is a popular edible oil in Asia, which has gained much attention for itsmedicinal applications on relieving various inflammation, however, the mechanism is still unknown. The pres...Oil from Camellia oleifera Abel. seed is a popular edible oil in Asia, which has gained much attention for itsmedicinal applications on relieving various inflammation, however, the mechanism is still unknown. The presentstudy was to investigate the gastroprotective effect of camellia oil against ethanol-induced gastric mucosal injuryin mice. The results showed that camellia oil pretreatment significantly reduced gastric ulcer injury. A remarkableinhibited oxidative stress by reducing the concentration of malondialdehyde and a significant decrease of thelevels of pro-inflammatory factors in gastric tissue were observed in camellia oil pretreated group. In addition,camellia oil improved the diversity of gut microbiota and changed the community structure and composition byincreasing Bacteriodes and Dorea. And the feces metabolomics found that metabolism of cofactors and vitamins,and lipid, carbohydrate and amino acid metabolism were modulated by admiration of camellia oil. Takentogether, the findings of this study suggested that camellia oil could ease the ethanol-induced gastric mucosalinjury via the improvement of anti-oxidant and anti-inflammatory status, as well as the regulation of gutmicrobiota and its metabolites.展开更多
As important supplementary to major edible oils, comparative chemical advantages of minor edible oils decidetheir development and usage. In this study, chemical composition of 13 kinds of specific edible vegetable oil...As important supplementary to major edible oils, comparative chemical advantages of minor edible oils decidetheir development and usage. In this study, chemical composition of 13 kinds of specific edible vegetable oilswere investigated. The comparative advantages of chemical compositions of these edible oils were obtained asfollows: (1) camellia, tiger nut and almond oil were rich in oleic acid, the contents of which accounted for79.43%, 69.16% and 66.26%, respectively;(2) safflower oil contained the highest content of linoleic acid(76.69%), followed by grape seed (66.85%) and walnut oil (57.30%);(3) perilla seed, siritch, peony seed andherbaceous peony seed oil were rich in α-linolenic acid (59.61%, 43.74%, 40.83% and 30.84%, respectively);(4)the total phytosterol contents of these oils ranged from 91.46 mg/100 g (camellia oil) to 506.46 mg/100 g (siritchoil);and (5) The best source of tocopherols was sacha inchi oil (122.74 mg/100 g), followed by perilla seed oil(55.89 mg/100 g), peony seed oil (53.73 mg/100 g) and herbaceous peony seed oil (47.17 mg/100 g). Thecomparative advantages of these specific edible oils indicated that they possess the high potential nutritionalvalues and health care functions.展开更多
Plant-mediated RNA interference(RNAi)has emerged as a promising technology for insect control.The green peach aphid,Myzus persicae,feeds on over 400 species of host plants.Brassica napus(rape)is the second most import...Plant-mediated RNA interference(RNAi)has emerged as a promising technology for insect control.The green peach aphid,Myzus persicae,feeds on over 400 species of host plants.Brassica napus(rape)is the second most important oilseed crop worldwide.Myzus persicae is highly reproductive and causes severe damage to the rape plants due to its quite flexible life cycle.In this study,we tested the RNAi effects of transgenic rape plants on M.persicae.By in vitro feeding M.persicae with artificial diets containing double-stranded RNAs(dsRNAs)targeting seven aphid genes,we identified a new gene encoding the partitioning-defective protein 6(Par6)as the most potent RNAi target.Tissue-and stage-expression analysis of Par6 suggested this gene is highly expressed in the embryo and adult stage of M.persicae.We next generated transgenic rape plants expressing ds Par6 by Agrobacteriummediated transformation and obtained nine independent transgenic lines.Compared to wild-type control plants,transgenic rape lines expressing ds Par6 showed strong resistance to M.persicae.Feeding assays revealed that feeding transgenic rape plants to M.persicae significantly decreased MpPar6 expression and survival rate and impaired fecundity.Furthermore,we showed that the resistance levels to M.persicae are positively correlated with ds Par6 expression levels in transgenic rape plants.Our study demonstrates that transgenic rape plants expressing ds Par6 are efficiently protected from M.persicae.Interfering with the genes involved in embryo development could be the effective RNAi targets for controlling aphids and potentially other insect pests.展开更多
The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.In the present study,we produced yellow seed mutants using a CRISPR/Cas9 system when ...The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.In the present study,we produced yellow seed mutants using a CRISPR/Cas9 system when the two BnPAP2 homologs were knocked out.Histochemical staining of the seed coat demonstrated that proanthocyanidin accumulation was significantly reduced in the pap2 double mutants and decreased specifically in the endothelial and palisade layer cells of the seed coat.Transcriptomic and metabolite profiling analysis suggested that disruption of the BnPAP2 genes could reduce the expression of structural and regulated genes in the phenylpropanoid and flavonoid biosynthetic pathways.The broad suppression of these genes might hinder proanthocyanidin accumulation during seed development,and thereby causing the yellow seed trait in B.napus.These results indicate that BnPAP2 might play a vital role in the regulatory network controlling proanthocyanidin accumulation.展开更多
The Qiongdongnan Basin,located in the sea between Hainan Island and the Xisha Islands,is a faulted Cenozoic basin on the northern continental margin of the South China Sea.The Changchang Sag,situated in the eastern pa...The Qiongdongnan Basin,located in the sea between Hainan Island and the Xisha Islands,is a faulted Cenozoic basin on the northern continental margin of the South China Sea.The Changchang Sag,situated in the eastern part of the central depressional zone in the deepwater area of the Qiongdongnan Basin,exhibits a near EW-striking morphology and represents an important potential target for oil/gas exploration.However,the age of the interface of the Lingshui Formation remains controversial,which hinders a comprehensive understanding of the tectonic evolution and hydrocarbon accumulation pattern in the Changchang Sag.This study focuses on well A,located in the depositional center of the Changchang Sag,and employs cyclostratigraphic analysis to identify cyclic signals of the Milankovitch cycles recorded in the sedimentary strata.Spectral analysis of natural gamma logging data from this well reveals the presence of 405 kyr long eccentricity cycles,100 kyr short eccentricity cycles,39.3 kyr obliquity cycles,and 20.58 kyr age precession cycles.By employing astronomical tuning,a“floating”astronomical time scale of the Lingshui Formation spanning 5.483 million years(Myr)is established.The top interface of the Oligocene in the International Geological Time Scale 2020(GTS2020),with a geological age of 23.03 Ma,is used as the time anchor to establish a high-precision absolute astronomical age framework for the Lingshui Formation.The results indicate that the bottom interface of the first member of the Lingshui Formation is dated at 23.79 Ma,the bottom interface of the second member is dated at 25.08 Ma,and the bottom interface of the third member is dated at 28.51 Ma.Additionally,the average sedimentation rate during this period is estimated to be 9.261 cm/kyr.Furthermore,paleoclimate and paleoenvironmental reconstructions were carried out through quantitative analysis of spore and pollen assemblages,as well as foraminifera within the Lingshui Formation.These analyses suggest that the deposition of the Lingshui Formation occurred under warm and humid temperate climatic conditions.The results of paleoclimate proxy analysis and comparative fitting analysis of the astronomical time scale confirm that the climate evolution during this period was influenced by astronomical orbital forces,such as eccentricity and precession.展开更多
Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection f...Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.展开更多
The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the informatio...The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs.展开更多
Soil salinization is a globally prevalent abiotic environmental stress.The imbalance of ions caused by high concentrations of sodium chloride results in a 40%reduction in soybean yield.Soybean,as an important crop for...Soil salinization is a globally prevalent abiotic environmental stress.The imbalance of ions caused by high concentrations of sodium chloride results in a 40%reduction in soybean yield.Soybean,as an important crop for soil quality improvement,necessitates the identification of salt-tolerant varieties and germplasms to effectively utilize and enhance saline-alkali land.In this study,we assessed the salt tolerance of 435 soybean varieties and germplasms during the seedling stage.Among them,Qihuang34,You2104,Hongzhudou,Pamanheidou,and Osage exhibited grade 1 salt tolerance rates surpassing other tested materials.Furthermore,Hongzhudou and Qihuang34 demonstrated higher salt tolerance during germination and emergence stages based on their elevated rates of emergence,salt tolerance index,chlorophyll content,and shoot fresh weights.Overall findings provide valuable resources for molecular breeding efforts aimed at developing salt-tolerant soybean varieties suitable for cultivation in saline-alkali soils.展开更多
Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-en...Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-enriched Brassica napus L.Significant increases were observed after fermentation in total sugars,reducing sugars,soluble proteins,total phenolic content(TPC),and total flavonoid content(TFC).The organic Se was retained at a concentration of 54.75 mg/g in the freeze-dried sample.Principal component analysis and cluster analysis showed good separation between the FFS and unfermented(FS)groups.Fragrant 2-ethyloxetane had the highest content among all volatiles,while sinapine had the highest content among all phenolic compounds.The fermentation process showed remarkable improvement in the abundance and concentration of volatile compounds and phenolic contents,making FFS exhibit strong antioxidant activity and inhibitory capacity againstα-glucosidase activity.The bioaccessibility of phenolic compounds was significantly greater in FFS compared to FS.ADMET analysis revealed that the majority of phenolic compounds contained in FFS did not exhibit mutagenicity toxicity,hepatotoxicity,skin sensitization,or blood-brain barrier penetration,indicating a favorable level of biosafety.Overall,our study provides a new insight into the further utilization of Se-enriched Brassica napus L.in foods.展开更多
The coal-measure source rock in the Chinese sea area plays a significant role as a hydrocarbon source rock,with its genetic environment,development and distribution,and hydrocarbon generation potential serving as esse...The coal-measure source rock in the Chinese sea area plays a significant role as a hydrocarbon source rock,with its genetic environment,development and distribution,and hydrocarbon generation potential serving as essential factors for the exploration of coal-type oil and gas fields.This study focuses on the coal-measure source rock of the Paleogene Enping Formation in the ZhuⅠDepression,located in the northern South China Sea.The main geological insights obtained are as follows.The coal measures of the Enping Formation are developed in a warm and wet tropical-subtropical climate.The development environment of the coal-measure source rock in the Enping Formation includes the braided river delta upper plain peat swamp,characterized by dry forest swamp coal facies with relatively thick coal seams and a small number of layers.The braided river delta lower plain swamp-interdistributary bay of braided river delta front represents a forest edge-wetland herbaceous swamp coal facies with numerous layers of thin coal seams and poor stability.The shore swamp corresponds to an open water swamp coal facies with multiple layers of thin coal seams and poor stability.The organic matter abundance in the braided river delta upper plain is the highest,followed by the braided river delta lower plain-braided river delta front,and the shore-shallow lake.The organic matter type is predominantly typeⅡ1.Thermal evolution analysis suggests that the organic matter has progressed into a substantial oil generation stage.The hydrocarbon generation potential of the coal-measure source rock in the Enping Formation is the highest in the braided river delta upper plain,followed by the braided river delta lower plain-braided river delta front and the shore-shallow lake.Overall,this study proposes three organic facies in the coal-measure source rock of the Enping Formation:upper-plain swamp-dry forest swamp facies,lower plain-interdistributary bay-forest-herbaceous swamp facies,and lake swamp-herbaceous swamp facies.展开更多
The study explored the influence of defatted flaxseed gum powder(DFGP) on the stability and quality of sesame paste by measuring and analyzing its composition, color, texture, particle size, centrifugal oil separation...The study explored the influence of defatted flaxseed gum powder(DFGP) on the stability and quality of sesame paste by measuring and analyzing its composition, color, texture, particle size, centrifugal oil separation rate,rheological properties, and microstructure. The results showed that the moisture and polysaccharide content of sesame paste was increased as the DFGP increased. Additionally, the hardness, gumminess, and chewiness of the sesame paste was improved, while the presence of particles with small particle size(1–100 μm) was decreased.The rate of oil precipitation was reduced by 28.99% when the amount of DFGP was 6%. The sesame paste samples exhibited pseudoplastic behavior, demonstrating shear thinning. As the shear rate increased, the apparent viscosity of sesame paste gradually decreased. Both the storage modulus(G’) and the loss modulus(G’’) increased as the shear frequency increased. The microstructure observation revealed that protein and oil were evenly distributed in the sesame paste system, and the addition of DFGP enhanced the bonding between oil and protein.This study can provide valuable references for high-quality sesame paste products in the food industry.展开更多
The objective of this study was to determine the differences of aroma and taste in three black sesame originsbefore and after processing via flavor and widely metabolomics.By analyzing the sensory characteristics and ...The objective of this study was to determine the differences of aroma and taste in three black sesame originsbefore and after processing via flavor and widely metabolomics.By analyzing the sensory characteristics and metabolites of raw and treated black sesame from China,Vietnam,and Myanmar,treated Chinese sesame have the most significant change in hardness after thermal processing,low viscosity and was easy to chew.The electronic nose could distinguish between raw and treated sesame due to the aroma distribution.The reason of treated sesame from China was“fragrant”is due to the highest content(2545.50μg/kg)of total pyrazines including 2,5-dimethylpyrazine,2-ethyl-5-methylpyrazine,2,3,5-trimethylpyrazine,3-ethyl-2,5-dimethylpyrazine.933 metabolites were detected via a wide targeted metabolomics in the taste of raw and treated sesame.Based on the analysis of metabolites related to bitterness,145 substances were selected.The main bitter contributors may be amino acids,dipeptides and organic acids.展开更多
Rapeseed(Brassica napus L.)is one of the main oil crops in the world,and increasing its yield is of great significance for ensuring the safety of edible oil.Presently,improving rapeseed plant architecture is an effect...Rapeseed(Brassica napus L.)is one of the main oil crops in the world,and increasing its yield is of great significance for ensuring the safety of edible oil.Presently,improving rapeseed plant architecture is an effective way to increase rapeseed yield with higher planting density.However,the regulatory mechanism of rapeseed plant architecture is poorly understood.In this study,a dwarf rapeseed mutant dwarf08(df08)is obtained by ethyl methane sulfonate(EMS)-mutagenesis.The decrease in plant height of df08 is mainly caused by the reduction in main inflorescence length and first effective branch height and controlled by a single semi-dominant gene.The hybrid plants(F1)show a semi-dwarf phenotype.Through map-based cloning and transgenic assay,we confirm that the nonsynonymous single nucleotide variant(SNV)(C to T)in BnaC03.BIN2,which is homologous with Arabidopsis(Arabidopsis thaliana)BIN2,is responsible for the dwarfism of df08.BnaC03.BIN2 interacts with BnaBZR1/BES1 and involves in brassinosteroids(BRs)signal transduction.Proline to Leucine substitution in 284(P284L)enhances the protein stability of BnaC03.bin2-D,disrupts BRs signal transduction and affects the expression of genes regulating cell division,leading to dwarfism of df08.This study provides a new insight for the mechanism of rapeseed plant height regulation and creates an elite germplasm that can be used for genetic improvement of rapeseed architecture.展开更多
Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative...Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative activity.For the composition and structure of FLM,our results confirmed that ferulic acid glycoside(FerAG)was directly ester-linked with herbacetin diglucoside(HDG)or pinoresinol diglucoside(PDG),which might determine the beginning of FLM biosynthesis.Additionally,p-coumaric acid glycoside(CouAG)might determine the end of chain extension during FLM synthesis in fl axseed.FLM exhibited higher antioxidative activity in polar systems,as shown by its superior 1,1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging capacity compared to the 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid)(ABTS)cation free radical scavenging capacity in non-polar systems.Moreover,the antioxidative activity of FLM was found to be highly dependent on its composition and structure.In particular,it was positively correlated with the number of phenolic hydroxyl groups(longer FLM chains)and inversely related to the steric hindrance at the ends(lower levels of FerAG and CouAG).These fi ndings verifi ed the potential application of FLM in nonpolar systems,particularly in functional food emulsions。展开更多
文摘Peanut or groundnut ( Arachis hypogaea L. ) is an important source of vegetable oil in the world. Genetic enhancement for high yield and high oil content has greatly contributed to enhanced pro-ductivity of peanut and increased supply of peanut oil. Further improving oil content and quality of peanut is still crucial for increasing productivity of arable land and market competitiveness of peanut oil. Based on investigation among the peanut germplasm accessions including wild Arachis species, the oil content could be as high as 65%. Heterosis has been observed for oil content in hybrids derived from diverse crossing parents. Segregates with enhanced oil content have been obtained by pyramiding different genes or alleles with major and minor additive effects. Improved testing techniques for oil content in breeding lines with reduced cost have accelerated breeding progress for high oil content. SSR markers associated with oil content have been identified by association and linkage analysis. The stability of oil content in peanut across seasons and locations is highly associated with cold tolerance, high nutrition efficiency and drought tolerance. Recent progress on improving fatty acids in particular marker assisted backcrossing breeding has contributed to higher quality peanut oil and other products. High oil peanut lines with im-proved resistance to aflatoxin production have been developed. The wild Arachis species would be of great value for peanut breeding in increasing oil content.
基金supported by the Shandong Provincial Key Research and Development program(2019GHZ031)the Taishan Scholar Project(Feng-Hong Huang)+2 种基金the Natural Science Foundation of Hubei Province(2019CFB342)the Central Public-interest Scientific Institution Basal Research Fund for Chinese Academy of Agricultural Sciences(1610172019009)the Earmarked Fund for China Agriculture Research System(CARS-14).
文摘Flaxseed oil(FSO)rich in n-3 polyunsaturated fatty acids(PUFAs)can protect against obesity and insulin resistance,but the underlying mechanism is unknown.An integrative multiomics of the microbiome and targeted metab olomics approach was performed to investigate the possible pathway for flaxseed oil supplementation on reducing serum total cholesterol,triglyceride and epididymal adipose in high-fat diet mice.FSO ameliorated the gut microbial dysbiosis by increasing the community diversity and the abundance of Clostridiales and Ruminococcaceae.These effects were associated with the regulation of bile acid(BAs)in the feces.FSO reduced the concentrations of conjugated BAs,such as cholic acid,tauro-α-murocholic acid,and tauro-ursodesoxycholic acid in feces,which in turn inhibit the intestinal farnesoid X receptor(FXR)-fibroblast growth factor(FGF)15 signaling pathway.Further analysis revealed that FSO activated FXR in the liver and regulated downstream gene expression(SHP,SREBP-1c,and CPT-1a),which promoted lipolysis and inhibited lipogenesis.The results of this study suggest that FSO modulates serum lipid concentrations by regulating the gut microbiota,FXR-FGF15 signaling and BA metabolism.
基金supports of the Wuhan Scientific and Technical Payoffs Transformation Project(2019030703011505)Enterprise Technology Innovation and Development Projects(2021BLB151)Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI).
文摘The optimal process conditions for solvent-free microwave extraction(SFME)of essential oils from Cinnamomum longepaniculatum deciduous leaves after moisture conditioning were established by response surface methodology(RSM).A Box-Behnken design(BBD)was applied to evaluate the effects of three independent variables:moisture content(A:54%–74%),microwave power(B:300–500 W)and microwave time(C:20–40 min),on the extraction yield of essential oil.The compounds of the essential oils obtained by SFME,hydro-distillation and microwaveassisted hydro-distillation(MADE)were identified by gas chromatography-mass spectrometry(GC-MS),and the total lipids of C.longepaniculatum fresh leaves and deciduous leaves were analyzed.The correlation analysis of the response regression model indicated that quadratic polynomial model could be employed to optimize the extraction of essential oil.The optimal extraction condition was A:58%,B:400 W and C:28 min.In the optimal condition,the maximum extraction yield was 4.475 mL/100 g dw and higher than that by MADE.The main compound of the essential oil was eucalyptol(63.54%),and total oxygenated compounds was 78.95%,mainly caused by SFME and the metabolism of endophytic bacteria with decreasing content of phospholipids and fatty acids.Analysis of variance under the extraction condition illustrated high fitness of the model and the success of RSM for optimizing and reflecting the expected process condition.SFME combined with moisture regulation was an effective method for extracting essential oil from C.longepaniculatum deciduous leaves.
基金This work was supported by the National Nature Foundation Committee of P.R.China(31871886,31671858)the earmarked fund for China Agriculture research system(CARS-12)+2 种基金the Hunan Provincial Natural Science Foundation of China(2019JJ40114)the Scientific Research Fund of Hunan Provincial Education Department,China(18A108)the Major Research plan of the Changsha(kq1801016).
文摘The origin traceability of edible oil is an effective way to protect the legitimate rights and interests of producers and consumers.This review briefly summarizes research progress on origin traceability technologies for edible oils including stable isotope ratio mass spectrometry,mineral element fingerprint analysis,organic component fingerprint analysis,near-infrared spectroscopy,nuclear magnetic resonance technology and biochemical analysis.Moreover,the development trends in edible oil origin traceability technology were proposed.
基金supported by the Natural Science Foundation of Hubei Province (2019CFB378)the Ministry of Science and Technology of the People’s Republic of China (2016YFD0501209)the Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2016-OCRI)
文摘Vegetable oil and derivative,as well as waste cooking oil,are important resources for microbial fermentation to produce high-value-added metabolites.Diversity of their compositions not only provides more choices for the fermentation by different microorganisms,but also is a challenge for their systematic utilization.According to the previous literature,4 main functions of vegetable oil and derivative can be summarized,such as carbon source,precursor,inducer and cell protectant during fermentation process.Currently,there is still insufficient knowledge about application of vegetable oil and derivative for high-value-added metabolite production.Therefore,this article firstly presented a comprehensive summary of compositions of vegetable oils and their derivatives,variety of corresponding microbial metabolites,limiting factors and optimization of fermentation process.
基金supported by National Natural Science Foundation of China(No.32070217)Subsidy project from NSFC of Guizhou Academy of Agricultural Sciences(No.[2021]50)+2 种基金The Scientific and Technological Key Program of Guizhou province(No.Qiankehezhicheng[2022]Key 031,025and 026)The Agricultural Scientific and Technological Research Projects of Guizhou province(No.Qiankehezhicheng[2020]1Y109 and 1Y106Youth Foundation of Guizhou Academy of Agricultural Sciences(No.[2021]07).
文摘Oilseed rape(Brassica napus L.) is an allotetraploid(AACC,2n=38) crop,valued for its edible oil and protein content.seed yield and nutritional composition of rapeseed are influenced by its yield and oil quality traits.However,the genetic basis of yield-related and oil-quality traits remain ambiguous.A panel of 266 diversified oilseed rape accessions was genotyped using 223 simple sequence repeat(SSR) markers covering all 19 chromosomes to identify significant markers associated with yield and quality traits.Twelve yield-related and six quality traits were investigated in two consecutive years(2014 and 2015),with three replications in two environments(Changshun,CS;and Qinghe,QH).Using the model GLM with population structure and kinship(Q+K),a total of 25 significant SSR markers(P <0.001) were detected to be associated with these twelve yield-related and six quality traits,explaining 4.56%-19.17% of the phenotypic variation for each trait.Based on these markers,BnaA03g23490D, BnaC09g46370D,BnaA07g37150D,BnaA01g32590D, and BnaC09g37280D were identified as pleiotropic genes controlling multiple traits.These candidate genes illustrated the potential for the genetic understanding of yield and oil quality traits.Most importantly,these significant markers can be used for marker-assisted breeding of oilseed rape in different environments.
基金supported by the Central Public-interest Scientific Institution Basal Research Fund(No.Y2002LM04)the Earmarked Fund for China Agriculture Research System(CARS-14)the Agricultural Science and Technology Innovation Project of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI).
文摘Oil from Camellia oleifera Abel. seed is a popular edible oil in Asia, which has gained much attention for itsmedicinal applications on relieving various inflammation, however, the mechanism is still unknown. The presentstudy was to investigate the gastroprotective effect of camellia oil against ethanol-induced gastric mucosal injuryin mice. The results showed that camellia oil pretreatment significantly reduced gastric ulcer injury. A remarkableinhibited oxidative stress by reducing the concentration of malondialdehyde and a significant decrease of thelevels of pro-inflammatory factors in gastric tissue were observed in camellia oil pretreated group. In addition,camellia oil improved the diversity of gut microbiota and changed the community structure and composition byincreasing Bacteriodes and Dorea. And the feces metabolomics found that metabolism of cofactors and vitamins,and lipid, carbohydrate and amino acid metabolism were modulated by admiration of camellia oil. Takentogether, the findings of this study suggested that camellia oil could ease the ethanol-induced gastric mucosalinjury via the improvement of anti-oxidant and anti-inflammatory status, as well as the regulation of gutmicrobiota and its metabolites.
基金supported by the National Key Research and Development Project of China(2021YFD1600101)the earmarked fund for China Agriculture research system(CARS-12 and CARS-13)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI).
文摘As important supplementary to major edible oils, comparative chemical advantages of minor edible oils decidetheir development and usage. In this study, chemical composition of 13 kinds of specific edible vegetable oilswere investigated. The comparative advantages of chemical compositions of these edible oils were obtained asfollows: (1) camellia, tiger nut and almond oil were rich in oleic acid, the contents of which accounted for79.43%, 69.16% and 66.26%, respectively;(2) safflower oil contained the highest content of linoleic acid(76.69%), followed by grape seed (66.85%) and walnut oil (57.30%);(3) perilla seed, siritch, peony seed andherbaceous peony seed oil were rich in α-linolenic acid (59.61%, 43.74%, 40.83% and 30.84%, respectively);(4)the total phytosterol contents of these oils ranged from 91.46 mg/100 g (camellia oil) to 506.46 mg/100 g (siritchoil);and (5) The best source of tocopherols was sacha inchi oil (122.74 mg/100 g), followed by perilla seed oil(55.89 mg/100 g), peony seed oil (53.73 mg/100 g) and herbaceous peony seed oil (47.17 mg/100 g). Thecomparative advantages of these specific edible oils indicated that they possess the high potential nutritionalvalues and health care functions.
基金supported by the National Natural Science Foundation of China(32102297 and 32272634)。
文摘Plant-mediated RNA interference(RNAi)has emerged as a promising technology for insect control.The green peach aphid,Myzus persicae,feeds on over 400 species of host plants.Brassica napus(rape)is the second most important oilseed crop worldwide.Myzus persicae is highly reproductive and causes severe damage to the rape plants due to its quite flexible life cycle.In this study,we tested the RNAi effects of transgenic rape plants on M.persicae.By in vitro feeding M.persicae with artificial diets containing double-stranded RNAs(dsRNAs)targeting seven aphid genes,we identified a new gene encoding the partitioning-defective protein 6(Par6)as the most potent RNAi target.Tissue-and stage-expression analysis of Par6 suggested this gene is highly expressed in the embryo and adult stage of M.persicae.We next generated transgenic rape plants expressing ds Par6 by Agrobacteriummediated transformation and obtained nine independent transgenic lines.Compared to wild-type control plants,transgenic rape lines expressing ds Par6 showed strong resistance to M.persicae.Feeding assays revealed that feeding transgenic rape plants to M.persicae significantly decreased MpPar6 expression and survival rate and impaired fecundity.Furthermore,we showed that the resistance levels to M.persicae are positively correlated with ds Par6 expression levels in transgenic rape plants.Our study demonstrates that transgenic rape plants expressing ds Par6 are efficiently protected from M.persicae.Interfering with the genes involved in embryo development could be the effective RNAi targets for controlling aphids and potentially other insect pests.
基金supported by the National Natural Science Foundation of China(31971980,U19A2029)The science and technology innovation Program of Hunan Province,China(2023RC1077)+1 种基金the Agricultural Science and Technology Innovation Foundation of Hunan,China(2022CX55)the Scientific Research Fund of Hunan Provincial Science and Technology Department,China(2021JC0007)。
文摘The yellow seed trait is preferred by breeders for its potential to improve the seed quality and commercial value of Brassica napus.In the present study,we produced yellow seed mutants using a CRISPR/Cas9 system when the two BnPAP2 homologs were knocked out.Histochemical staining of the seed coat demonstrated that proanthocyanidin accumulation was significantly reduced in the pap2 double mutants and decreased specifically in the endothelial and palisade layer cells of the seed coat.Transcriptomic and metabolite profiling analysis suggested that disruption of the BnPAP2 genes could reduce the expression of structural and regulated genes in the phenylpropanoid and flavonoid biosynthetic pathways.The broad suppression of these genes might hinder proanthocyanidin accumulation during seed development,and thereby causing the yellow seed trait in B.napus.These results indicate that BnPAP2 might play a vital role in the regulatory network controlling proanthocyanidin accumulation.
基金supported by the major program of the China National Offshore Oil Corporation(No.2021-KT-YXKY-05)the National Natural Science Foundation of China(No.41472098).
文摘The Qiongdongnan Basin,located in the sea between Hainan Island and the Xisha Islands,is a faulted Cenozoic basin on the northern continental margin of the South China Sea.The Changchang Sag,situated in the eastern part of the central depressional zone in the deepwater area of the Qiongdongnan Basin,exhibits a near EW-striking morphology and represents an important potential target for oil/gas exploration.However,the age of the interface of the Lingshui Formation remains controversial,which hinders a comprehensive understanding of the tectonic evolution and hydrocarbon accumulation pattern in the Changchang Sag.This study focuses on well A,located in the depositional center of the Changchang Sag,and employs cyclostratigraphic analysis to identify cyclic signals of the Milankovitch cycles recorded in the sedimentary strata.Spectral analysis of natural gamma logging data from this well reveals the presence of 405 kyr long eccentricity cycles,100 kyr short eccentricity cycles,39.3 kyr obliquity cycles,and 20.58 kyr age precession cycles.By employing astronomical tuning,a“floating”astronomical time scale of the Lingshui Formation spanning 5.483 million years(Myr)is established.The top interface of the Oligocene in the International Geological Time Scale 2020(GTS2020),with a geological age of 23.03 Ma,is used as the time anchor to establish a high-precision absolute astronomical age framework for the Lingshui Formation.The results indicate that the bottom interface of the first member of the Lingshui Formation is dated at 23.79 Ma,the bottom interface of the second member is dated at 25.08 Ma,and the bottom interface of the third member is dated at 28.51 Ma.Additionally,the average sedimentation rate during this period is estimated to be 9.261 cm/kyr.Furthermore,paleoclimate and paleoenvironmental reconstructions were carried out through quantitative analysis of spore and pollen assemblages,as well as foraminifera within the Lingshui Formation.These analyses suggest that the deposition of the Lingshui Formation occurred under warm and humid temperate climatic conditions.The results of paleoclimate proxy analysis and comparative fitting analysis of the astronomical time scale confirm that the climate evolution during this period was influenced by astronomical orbital forces,such as eccentricity and precession.
基金supported by the Forward Looking Basic Major Scientific and Technological Projects of CNPC (Grant No.2021DJ2202).
文摘Ultra-low permeability reservoirs are characterized by small pore throats and poor physical properties, which areat the root of well-known problems related to injection and production. In this study, a gas injection floodingapproach is analyzed in the framework of numerical simulations. In particular, the sequence and timing of fracturechanneling and the related impact on production are considered for horizontal wells with different fracturemorphologies. Useful data and information are provided about the regulation of gas channeling and possible strategiesto delay gas channeling and optimize the gas injection volume and fracture parameters. It is shown that inorder to mitigate gas channeling and ensure high production, fracture length on the sides can be controlled andlonger fractures can be created in the middle by which full gas flooding is obtained at the fracture location in themiddle of the horizontal well. A Differential Evolution (DE) algorithm is provided by which the gas injectionvolume and the fracture parameters of gas injection flooding can be optimized. It is shown that an improvedoil recovery factor as high as 6% can be obtained.
文摘The phase change of CO_(2) has a significant bearing on the siting, injection, and monitoring of storage. The phase state of CO_(2) is closely related to pressure. In the process of seismic exploration, the information of formation pressure can be response in the seismic data. Therefore, it is possible to monitor the formation pressure using time-lapse seismic method. Apart from formation pressure, the information of porosity and CO_(2) saturation can be reflected in the seismic data. Here, based on the actual situation of the work area, a rockphysical model is proposed to address the feasibility of time-lapse seismic monitoring during CO_(2) storage in the anisotropic formation. The model takes into account the formation pressure, variety minerals composition, fracture, fluid inhomogeneous distribution, and anisotropy caused by horizontal layering of rock layers(or oriented alignment of minerals). From the proposed rockphysical model and the well-logging, cores and geological data at the target layer, the variation of P-wave and S-wave velocity with formation pressure after CO_(2) injection is calculated. And so are the effects of porosity and CO_(2) saturation. Finally, from anisotropic exact reflection coefficient equation, the reflection coefficients under different formation pressures are calculated. It is proved that the reflection coefficient varies with pressure. Compared with CO_(2) saturation, the pressure has a greater effect on the reflection coefficient. Through the convolution model, the seismic record is calculated. The seismic record shows the difference with different formation pressure. At present, in the marine CO_(2) sequestration monitoring domain, there is no study involving the effect of formation pressure changes on seismic records in seafloor anisotropic formation. This study can provide a basis for the inversion of reservoir parameters in anisotropic seafloor CO_(2) reservoirs.
基金supported by The National Natural Science Foundation of China(32171957)Scientific and Technological Innovation 2030,Design and Cultivation of New High-Yielding Salt-Alkali Tolerant Soybean Varieties(2023ZD0403602)Knowledge Innovation Program of Wuhan(2023020201010127).
文摘Soil salinization is a globally prevalent abiotic environmental stress.The imbalance of ions caused by high concentrations of sodium chloride results in a 40%reduction in soybean yield.Soybean,as an important crop for soil quality improvement,necessitates the identification of salt-tolerant varieties and germplasms to effectively utilize and enhance saline-alkali land.In this study,we assessed the salt tolerance of 435 soybean varieties and germplasms during the seedling stage.Among them,Qihuang34,You2104,Hongzhudou,Pamanheidou,and Osage exhibited grade 1 salt tolerance rates surpassing other tested materials.Furthermore,Hongzhudou and Qihuang34 demonstrated higher salt tolerance during germination and emergence stages based on their elevated rates of emergence,salt tolerance index,chlorophyll content,and shoot fresh weights.Overall findings provide valuable resources for molecular breeding efforts aimed at developing salt-tolerant soybean varieties suitable for cultivation in saline-alkali soils.
基金supported by the National Natural Science Foundation of China(U21A20274,31972041)the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI)+1 种基金Earmarked Fund for China Agriculture Research System(CARS-12)Support Enterprise Technology Innovation and Development Projects(2021BLB151)。
文摘Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-enriched Brassica napus L.Significant increases were observed after fermentation in total sugars,reducing sugars,soluble proteins,total phenolic content(TPC),and total flavonoid content(TFC).The organic Se was retained at a concentration of 54.75 mg/g in the freeze-dried sample.Principal component analysis and cluster analysis showed good separation between the FFS and unfermented(FS)groups.Fragrant 2-ethyloxetane had the highest content among all volatiles,while sinapine had the highest content among all phenolic compounds.The fermentation process showed remarkable improvement in the abundance and concentration of volatile compounds and phenolic contents,making FFS exhibit strong antioxidant activity and inhibitory capacity againstα-glucosidase activity.The bioaccessibility of phenolic compounds was significantly greater in FFS compared to FS.ADMET analysis revealed that the majority of phenolic compounds contained in FFS did not exhibit mutagenicity toxicity,hepatotoxicity,skin sensitization,or blood-brain barrier penetration,indicating a favorable level of biosafety.Overall,our study provides a new insight into the further utilization of Se-enriched Brassica napus L.in foods.
基金The Scientific research project under contract under contract No.CCL2021RCPS172KQNFormation mechanism and distribution prediction of Cenozoic marine source rocks in Qiongdongnan and Pearl River Mouth Basin under contract No.2021KT-YXKY-01+2 种基金the resource potential,accumulation mechanism and breakthrough direction of potential oil-rich sags in offshore basins of China under contract No.2021-KT-YXKY-03the Open Foundation of Hebei Provincial Key Laboratory of Resource Survey and Researchthe National Natural Science Foundation of China(NSFC)under contract Nos 42072188,42272205。
文摘The coal-measure source rock in the Chinese sea area plays a significant role as a hydrocarbon source rock,with its genetic environment,development and distribution,and hydrocarbon generation potential serving as essential factors for the exploration of coal-type oil and gas fields.This study focuses on the coal-measure source rock of the Paleogene Enping Formation in the ZhuⅠDepression,located in the northern South China Sea.The main geological insights obtained are as follows.The coal measures of the Enping Formation are developed in a warm and wet tropical-subtropical climate.The development environment of the coal-measure source rock in the Enping Formation includes the braided river delta upper plain peat swamp,characterized by dry forest swamp coal facies with relatively thick coal seams and a small number of layers.The braided river delta lower plain swamp-interdistributary bay of braided river delta front represents a forest edge-wetland herbaceous swamp coal facies with numerous layers of thin coal seams and poor stability.The shore swamp corresponds to an open water swamp coal facies with multiple layers of thin coal seams and poor stability.The organic matter abundance in the braided river delta upper plain is the highest,followed by the braided river delta lower plain-braided river delta front,and the shore-shallow lake.The organic matter type is predominantly typeⅡ1.Thermal evolution analysis suggests that the organic matter has progressed into a substantial oil generation stage.The hydrocarbon generation potential of the coal-measure source rock in the Enping Formation is the highest in the braided river delta upper plain,followed by the braided river delta lower plain-braided river delta front and the shore-shallow lake.Overall,this study proposes three organic facies in the coal-measure source rock of the Enping Formation:upper-plain swamp-dry forest swamp facies,lower plain-interdistributary bay-forest-herbaceous swamp facies,and lake swamp-herbaceous swamp facies.
基金This study was supported by the National Key Research and Development Program of China(2023YFD2100403)the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI)+2 种基金the earmarked fund for CARS-14,the Innovation Group Project of Hubei Province(2023AFA042)the Key Research Projects of Hubei Province(2020BBA045)the Knowledge Innovation Program of Wuhan-Basic Research(3562).
文摘The study explored the influence of defatted flaxseed gum powder(DFGP) on the stability and quality of sesame paste by measuring and analyzing its composition, color, texture, particle size, centrifugal oil separation rate,rheological properties, and microstructure. The results showed that the moisture and polysaccharide content of sesame paste was increased as the DFGP increased. Additionally, the hardness, gumminess, and chewiness of the sesame paste was improved, while the presence of particles with small particle size(1–100 μm) was decreased.The rate of oil precipitation was reduced by 28.99% when the amount of DFGP was 6%. The sesame paste samples exhibited pseudoplastic behavior, demonstrating shear thinning. As the shear rate increased, the apparent viscosity of sesame paste gradually decreased. Both the storage modulus(G’) and the loss modulus(G’’) increased as the shear frequency increased. The microstructure observation revealed that protein and oil were evenly distributed in the sesame paste system, and the addition of DFGP enhanced the bonding between oil and protein.This study can provide valuable references for high-quality sesame paste products in the food industry.
基金Basic research business expenses(Y2023LM18)the Agricultural Science and Technology Innovation Project of the Chinese Academy of Agricultural Sciences(CAAS-ASTIP-2021-OCRI).
文摘The objective of this study was to determine the differences of aroma and taste in three black sesame originsbefore and after processing via flavor and widely metabolomics.By analyzing the sensory characteristics and metabolites of raw and treated black sesame from China,Vietnam,and Myanmar,treated Chinese sesame have the most significant change in hardness after thermal processing,low viscosity and was easy to chew.The electronic nose could distinguish between raw and treated sesame due to the aroma distribution.The reason of treated sesame from China was“fragrant”is due to the highest content(2545.50μg/kg)of total pyrazines including 2,5-dimethylpyrazine,2-ethyl-5-methylpyrazine,2,3,5-trimethylpyrazine,3-ethyl-2,5-dimethylpyrazine.933 metabolites were detected via a wide targeted metabolomics in the taste of raw and treated sesame.Based on the analysis of metabolites related to bitterness,145 substances were selected.The main bitter contributors may be amino acids,dipeptides and organic acids.
基金supported by the National Key Research and Development Program of China(2022YFD1200401)the National Natural Science Foundation of China(U22A20477,32172095)the Central Public-interest Scientific Institution Basal Research Fund(Y2022QC21).
文摘Rapeseed(Brassica napus L.)is one of the main oil crops in the world,and increasing its yield is of great significance for ensuring the safety of edible oil.Presently,improving rapeseed plant architecture is an effective way to increase rapeseed yield with higher planting density.However,the regulatory mechanism of rapeseed plant architecture is poorly understood.In this study,a dwarf rapeseed mutant dwarf08(df08)is obtained by ethyl methane sulfonate(EMS)-mutagenesis.The decrease in plant height of df08 is mainly caused by the reduction in main inflorescence length and first effective branch height and controlled by a single semi-dominant gene.The hybrid plants(F1)show a semi-dwarf phenotype.Through map-based cloning and transgenic assay,we confirm that the nonsynonymous single nucleotide variant(SNV)(C to T)in BnaC03.BIN2,which is homologous with Arabidopsis(Arabidopsis thaliana)BIN2,is responsible for the dwarfism of df08.BnaC03.BIN2 interacts with BnaBZR1/BES1 and involves in brassinosteroids(BRs)signal transduction.Proline to Leucine substitution in 284(P284L)enhances the protein stability of BnaC03.bin2-D,disrupts BRs signal transduction and affects the expression of genes regulating cell division,leading to dwarfism of df08.This study provides a new insight for the mechanism of rapeseed plant height regulation and creates an elite germplasm that can be used for genetic improvement of rapeseed architecture.
基金support from National Natural Science Foundation of China(32072267)supported by China Agriculture Research System of CRAS-14.
文摘Flaxseed lignan macromolecules(FLM)are a class of important secondary metabolites in fl axseed,which have been widely concerned due to their biological and pharmacological properties,especially for their antioxidative activity.For the composition and structure of FLM,our results confirmed that ferulic acid glycoside(FerAG)was directly ester-linked with herbacetin diglucoside(HDG)or pinoresinol diglucoside(PDG),which might determine the beginning of FLM biosynthesis.Additionally,p-coumaric acid glycoside(CouAG)might determine the end of chain extension during FLM synthesis in fl axseed.FLM exhibited higher antioxidative activity in polar systems,as shown by its superior 1,1-diphenyl-2-picrylhydrazyl(DPPH)free radical scavenging capacity compared to the 2,2’-azinobis(3-ehtylbenzothiazolin-6-sulfnic acid)(ABTS)cation free radical scavenging capacity in non-polar systems.Moreover,the antioxidative activity of FLM was found to be highly dependent on its composition and structure.In particular,it was positively correlated with the number of phenolic hydroxyl groups(longer FLM chains)and inversely related to the steric hindrance at the ends(lower levels of FerAG and CouAG).These fi ndings verifi ed the potential application of FLM in nonpolar systems,particularly in functional food emulsions。