期刊文献+
共找到25篇文章
< 1 2 >
每页显示 20 50 100
In situ modification of heavy oil catalyzed by nanosized metal-organic framework at mild temperature and its mechanism
1
作者 Li Wang Ji-Xiang Guo +3 位作者 Rui-Ying Xiong Chen-Hao Gao Xiao-Jun Zhang Dan Luo 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第3期166-173,共8页
Two catalysts, nano-sized cobalt-metal-organic framework(Co-MOF) and nickel(Ni)-MOF, were successfully prepared by the modification method. Tetralin(C10H12) was used as the hydrogen donor for the catalytic cracking an... Two catalysts, nano-sized cobalt-metal-organic framework(Co-MOF) and nickel(Ni)-MOF, were successfully prepared by the modification method. Tetralin(C10H12) was used as the hydrogen donor for the catalytic cracking and hydrogenation modification study of the dehydrated crude oil from the Shengli Oilfield. The optimal reaction conditions were determined through orthogonal experiments, and the components of the crude oil and modified oil samples were analyzed. The results revealed that the nanoMOF catalysts were successfully prepared and exhibited high catalytic activity. They could catalyze the cracking of large molecules in heavy oil at mild temperatures(<300°C), leading to the decomposition of the hydrogen donor. When the mass fraction of the catalyst was 0.2%, the mass fraction of the hydrogen donor was 1%, and the reaction temperature was 280°C, the Ni-MOF showed the best catalytic viscosity reduction effect. It could reduce the viscosity of heavy oil at 50°C from 15761.9 m Pa.s to 1266.2 m Pa.s,with a viscosity reduction rate of 91.97%. The modification effect of Co-MOF was the next best, which could reduce the viscosity of heavy oil to 2500.1 m Pa.s with a viscosity reduction rate of 84.14%. Molecular dynamics simulations revealed a strong interaction force between the MOF surface and asphaltene molecules. In the process of heavy-oil catalytic hydrogenation, the nano-MOF catalyst exhibited high catalytic activity. On the one hand, the empty d orbitals outside the metal atoms in the catalyst could polarize the carbon atoms in the organic matter, accelerating the breaking of long chains. On the other hand, the metal atoms in the catalyst could bond with the carbon σ bonds, breaking the carbon-carbon bonds. This disrupted the structure of the recombined components in the crude oil, irreversibly reducing the viscosity of the heavy oil and improving its fluidity. 展开更多
关键词 Nano-sized MOF Petroleum Viscosity reduction Catalyst NANOMATERIALS
下载PDF
Influences of Global Oil Price Fluctuations on the Adjustment of China’s Overseas Oil and Gas Assets
2
作者 Hou Jinping Hou Mingyang 《China Oil & Gas》 CAS 2021年第6期48-53,共6页
Since the second half of 2020,the volatile trend of global oil prices and the transformation development of oil companies have had a large impact on the global crude oil market.From the perspective of oil price fluctu... Since the second half of 2020,the volatile trend of global oil prices and the transformation development of oil companies have had a large impact on the global crude oil market.From the perspective of oil price fluctuations,although the oil price is in a relatively high range at the current stage,it is still bound by the low oil price cycle and does not have the basis for an uptrend in the long term.From the perspective of oil company transformation. 展开更多
关键词 COMPANIES PRICE TRANSFORMATION
下载PDF
Rapid Determination of Complete Distribution of Pore and Throat in Tight Oil Sandstone of Triassic Yanchang Formation in Ordos Basin, China 被引量:2
3
作者 DU Shuheng SHI Yongmin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2020年第3期822-830,共9页
This study aimed to investigate the complete distribution of reservoir space in tight oil sandstone combining casting slices, field emission scanning electron microscopy(FE-SEM), the pore-throat theory model, high-res... This study aimed to investigate the complete distribution of reservoir space in tight oil sandstone combining casting slices, field emission scanning electron microscopy(FE-SEM), the pore-throat theory model, high-resolution image processing, mathematical statistics, and other technical means. Results of reservoir samples from the Xin’anbian area of Ordos Basin showed that the total pore radius curve of the tight oil sandstone reservoir exhibited a multi-peak distribution, and the peaks appeared to be more focused on the ends of the range. This proved that pores with a radius of 1–50,000 nm provided the most significant storage space for tight oil, indicating that special attention should be paid to this range of the pore size distribution. Meanwhile, the complete throat radius curve of the tight oil sandstone reservoir exhibited a multipeak distribution. However, the peak values were distributed throughout the scales. This confirmed that the throat radius in the tight oil sandstone reservoir was not only in the range of hundreds of nanometers but was also widely distributed in the scale approximately equal to the pore size. The new rapid determination method could provide a precise theoretical basis for the comprehensive evaluation, exploration, and development of a tight oil sandstone reservoir. 展开更多
关键词 complete distribution tight oil reservoir multi-precision imaging mathematical statistics
下载PDF
Influence of Bedding and Mineral Composition on Mechanical Properties and Its Implication for Hydraulic Fracturing of Shale Oil Reservoirs 被引量:2
4
作者 WANG Xiaoqiong XU Jianguo +6 位作者 ZHAO Chenxu LIU Tongyuan GE Hongkui SHEN Yinghao WU Shan YU Jiayao HUANG Rongyan 《Earthquake Research in China》 CSCD 2020年第2期167-186,共20页
The premise of hydraulic fracturing is to have an accurate and detailed understanding of the rock mechanical properties and fracture propagation law of shale reservoirs. In this paper,a comprehensive evaluation of the... The premise of hydraulic fracturing is to have an accurate and detailed understanding of the rock mechanical properties and fracture propagation law of shale reservoirs. In this paper,a comprehensive evaluation of the mechanical properties of the shale oil reservoir in the south of Songliao Basin is carried out. Based on the experiments and the in-situ stress analysis, the fracture propagation law of three types of shale reservoirs is obtained,and the suggestions for fracturing are put forward. The results have shown that the fracture propagation of pure shale and low mature reservoir is easy to open along the bedding plane under compression loading,which is greatly influenced by the bedding. Sand-bearing shale is slightly better,the fractures of which are not easy to open along the bedding plane. The mechanical experimental results show that all the samples have the characteristics of low compressive strength,low Young’s modulus and strong anisotropy,indicating that the shale oil reservoir is certain plastic,which is related to its high clay mineral content and controlled by the bedding development. Compared with pure shale and low mature shale,the sandbearing shale has less clay content and less developed bedding,which maybe the main reason for its slightly better brittleness. Overall,the expansion of hydraulic fracture is controlled by in-situ stress and bedding. Because of the development of bedding,it is easy to form horizontal fractures. Thus it is not suitable for horizontal well fracturing.Because of the high content of clay minerals,the applicability of conventional slick hydraulic fracturing fluid is poor. It is suggested to use vertical well or directional well to carry out volume fracturing. In this way,the effect of bedding can be effectively used to open and connect the bedding and form a larger fracture network. 展开更多
关键词 Shale reservoir Mechanical properties Fracture Hydraulic fracturing Horizontal well BEDDING
下载PDF
How argillaceous reservoirs exhibit better quality than silty mudstones?Anomalous behavior of shale gas-bearing properties of continental fine-grained sediments in Southwest China and its possible forcing mechanisms
5
作者 Wei Yang Liang Xu +6 位作者 Dong-Xia Chen Zhen-Xue Jiang Zi-Ya Zhang Bin Hao Ru-Si Zuo Qian-You Wang Rong Chen 《Petroleum Science》 SCIE CAS CSCD 2021年第6期1589-1610,共22页
Achieving a thorough understanding of how primary sedimentary granularity drives considerable heterogeneity in internal reservoir attributes of terrigenous fine-grained deposits is of great significance.We investigate... Achieving a thorough understanding of how primary sedimentary granularity drives considerable heterogeneity in internal reservoir attributes of terrigenous fine-grained deposits is of great significance.We investigated the quantitative differentiation and its corresponding driving forces of physical reservoir properties and pore-structure characteristics of silty-mud sediments in the Upper Triassic Xujiahe Formation(SW China)using a multi-method approach.The results show that the micro-mesopore volume and surface area of mudstones/shales are apparently higher than those of silty mudstones and a remarkable threefold rise in average permeability also presents.Extensively distributed bitumen pores occurring mostly along brittle mineral grains or forming clay-organic complexes make considerable contributions to shrinking microcracks.Furthermore,an evidently higher concentration of clay minerals in mudstone/shale reservoirs is primarily responsible for development of the two types of clay intercrystalline pores distributed along grain aggregates and between well-oriented platelets.These two major causes facilitate the formation of micro-bedding fractures/non-bedding micro fractures and connected fracture and pore-fracture networks,and also high-quality argillaceous reservoirs by strongly enhancing storage spaces and seepage capacities.Finally,a conceptual model is established for interpreting a differential reservoir-forming mechanism and corresponding two-sided effects on petrophysical and reservoir quality properties for continental silty-mud sediments. 展开更多
关键词 GRANULARITY Silty-mud sediments Reservoir quality Bitumen pores Clay mineral Differential reservoir-forming
下载PDF
Experimental and Numerical Assessment of the Influence of Bottomhole Pressure Drawdown on Terrigenous Reservoir Permeability and Well Productivity
6
作者 Sergey Popov Sergey Chernyshov Evgeniy Gladkikh 《Fluid Dynamics & Materials Processing》 EI 2023年第3期619-634,共16页
During oil and gas fields development,a decrease in reservoir and bottomhole pressure has often a detrimental effect on reservoir properties,especially permeability.This study presents the results of laboratory tests ... During oil and gas fields development,a decrease in reservoir and bottomhole pressure has often a detrimental effect on reservoir properties,especially permeability.This study presents the results of laboratory tests conducted to determine the response of terrigenous reservoir core-sample permeability to changes in the effective stresses and a decrease in the reservoir pressure.The considered samples were exposed for a long time to a constant high effective stress for a more reliable assessment of the viscoplastic deformations.According to these experiments,the decrease of the core samples permeability may reach 21%with a decrease in pressure by 9.5 MPa from the initial reservoir conditions.Numerical simulations have been also conducted.These have been based on the finite element modeling of the near-wellbore zone of the terrigenous reservoir using poroelasticity relations.The simulation results show a limited decrease in reservoir permeability in the near-wellbore zone(by 17%,which can lead to a decrease in the well productivity by 13%). 展开更多
关键词 Terrigenous reservoir PERMEABILITY core sample reservoir pressure bottomhole pressure drawdown effective stress well productivity
下载PDF
Analysis of Channeling-Path Phenomena in a Complex Fault-Block Reservoir with Low Recovery Factor and High Water-Cut Ratio
7
作者 Qunyi Wang Xiaoli Ma +4 位作者 Yongbin Bi Haiyan He Xiao Gu Tongjing Liu Lekun Zhao 《Fluid Dynamics & Materials Processing》 EI 2023年第2期361-377,共17页
Current methods for the analysis of channeling-path phenomena in reservoirs cannot account for the influence of time and space on the actual seepage behavior.In the present study,this problem is addressed considering ... Current methods for the analysis of channeling-path phenomena in reservoirs cannot account for the influence of time and space on the actual seepage behavior.In the present study,this problem is addressed considering actual production data and dynamic characteristic parameters quantitatively determined in the near wellbore area by fitting the water-cut curve of the well.Starting from the dynamic relationship between injection and production data,the average permeability is determined and used to obtain a real-time quantitative characterization of the seepage behavior of the channeling-path in the far wellbore area.For the considered case study(Jidong oilfield),it is found that the seepage capacity of the channeling-path in the far wellbore area is far less(10 times smaller)than that of the channeling-path in the near wellbore area.The present study and the proposed model(combining near wellbore area and far wellbore area real-time data)have been implemented to support the definition of relevant adjustment measures to ultimately improve oil recovery. 展开更多
关键词 Complex fault-block reservoirs channeling path quantitative identification characteristic parameters dynamic inversion
下载PDF
Application of nanomaterial for enhanced oil recovery 被引量:4
8
作者 Tuo Liang Ji-Rui Hou +2 位作者 Ming Qu Jia-Xin Xi Infant Raj 《Petroleum Science》 SCIE CAS CSCD 2022年第2期882-899,共18页
Nanofluid offers more opportunities and challenges over the traditional surfactant and polymer solutions during enhanced oil recovery(commonly referred to as tertiary oil recovery)due to its remarkable properties.This... Nanofluid offers more opportunities and challenges over the traditional surfactant and polymer solutions during enhanced oil recovery(commonly referred to as tertiary oil recovery)due to its remarkable properties.This review mainly discusses the preparation methods of amphiphilic nanoparticles due to their higher interface activity than sole hydrophilic or hydrophobic nanoparticles(SHNPs).The nanofluids’stability is reviewed in this work.Moreover,the mechanisms of nanofluids in enhancing oil recovery(N-EOR)in terms of interfacial tension reduction,wettability alteration,foam stabilization,emulsion stabilization,structural disjoining pressure,and depressurization-increasing injection are mainly summarized and reviewed.Also,the synergistic effects of nanofluids and traditional surfactants and polymers are discussed.Finally,nanofluids’challenges and prospects are also outlined.The nanofluids can still be regarded as an outstanding candidate for enhancing oil recovery significantly in the future although there are limitations on their applications from laboratory scale to field scale. 展开更多
关键词 NANOPARTICLE Preparation method of amphiphilic nanomaterial STABILITY MECHANISM N-EOR
下载PDF
Imaging-Based Characterization of Perthite in the Upper Triassic Yanchang Formation Tight Sandstone of the Ordos Basin,China 被引量:2
9
作者 DU Shuheng SHI Guoxin +3 位作者 YUE Xinjian KOU Gen ZHOU Bo SHI Yongmin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第2期373-385,共13页
This work investigated the element distribution of perthite from the Upper Triassic Yanchang Formation tight sandstone in the Ordos Basin of northern China by field emission scanning electron microscopy(FE-SEM) and en... This work investigated the element distribution of perthite from the Upper Triassic Yanchang Formation tight sandstone in the Ordos Basin of northern China by field emission scanning electron microscopy(FE-SEM) and energy dispersive spectrometer(EDS). FE-SEM results indicate significant differences in the morphology of Na-rich feldspar when K-rich feldspar is the main component of the perthite. EDS results show that different types of perthite have clearly defined differences on different element indexes. Additionally, indexes such as average-weight-K(K-rich)/Na(Na-rich), maximumweight-K(Na-rich)/Na(Na-rich) and average-atomic-K(K-rich)/Na(Na-rich) might be the most effective ones to identify perthite types. Perthite is divided into six main types, i.e., perthite with thick parallel stripe distribution, with thin parallel stripe distribution, with lumpy stripe distribution, with dendritic stripe distribution, with encircling stripe distribution, and with mixed stripe distribution. 展开更多
关键词 PETROGRAPHY perthite element distribution EDS FE-SEM image processing Yanchang Formation Late TRIASSIC ORDOS Basin
下载PDF
Quantitative investigation of multi-fracture morphology during TPDF through true tri-axial fracturing experiments and CT scanning 被引量:5
10
作者 Ming-Hui Li Fu-Jian Zhou +3 位作者 Jin-Jun Liu Li-Shan Yuan Guo-Peng Huang Bo Wang 《Petroleum Science》 SCIE CAS CSCD 2022年第4期1700-1717,共18页
Due to the reservoir heterogeneity and the stress shadow effect, multiple hydraulic fractures within one fracturing segment cannot be initiated simultaneously and propagate evenly, which will cause a low effectiveness... Due to the reservoir heterogeneity and the stress shadow effect, multiple hydraulic fractures within one fracturing segment cannot be initiated simultaneously and propagate evenly, which will cause a low effectiveness of reservoir stimulation. Temporary plugging and diverting fracturing(TPDF) is considered to be a potential uniform-stimulation method for creating multiple fractures simultaneously in the oilfield. However, the multi-fracture propagation morphology during TPDF is not clear now. The purpose of this study is to quantitatively investigate the multi-fracture propagation morphology during TPDF through true tri-axial fracturing experiments and CT scanning. Critical parameters such as fracture spacing, number of perforation clusters, the viscosity of fracturing fluid, and the in-situ stress have been investigated. The fracture geometry before and after diversion have been quantitively analyzed based on the two-dimensional CT slices and three-dimensional reconstruction method. The main conclusions are as follows:(1) When injecting the high viscosity fluid or perforating at the location with low in-situ stress, multiple hydraulic fractures would simultaneously propagate. Otherwise, only one hydraulic fracture was created during the initial fracturing stage(IFS) for most tests.(2) The perforation cluster effectiveness(PCE) has increased from 26.62% during the IFS to 88.86% after using diverters.(3) The diverted fracture volume has no apparent correlation with the pressure peak and peak frequency during the diversion fracturing stage(DFS) but is positively correlated with water-work.(4) Four types of plugging behavior in shale could be controlled by adjusting the diverter recipe and diverter injection time, and the plugging behavior includes plugging the natural fracture in the wellbore, plugging the previous hydraulic fractures, plugging the fracture tip and plugging the bedding. 展开更多
关键词 Hydraulic fracturing Temporary plugging and diverting fracturing(TPDF) Multiple fracture Tri-axial experiment CT scanning
下载PDF
Development review and the prospect of oil shale in-situ catalysis conversion technology
11
作者 Li Wang Chen-Hao Gao +2 位作者 Rui-Ying Xiong Xiao-Jun Zhang Ji-Xiang Guo 《Petroleum Science》 SCIE EI CAS 2024年第2期1385-1395,共11页
As an unconventional resource, oil shale possesses abundant reserves and significant potential for industrial applications. The rational and efficient development of oil shale resources holds immense importance in red... As an unconventional resource, oil shale possesses abundant reserves and significant potential for industrial applications. The rational and efficient development of oil shale resources holds immense importance in reducing national energy demand. In-situ catalytic technology, characterized by its high efficiency, low pollution, and minimal energy consumption, represents a key direction for future oil shale development. This paper provides a comprehensive review of research progress in in-situ oil shale mining technology, oil shale pyrolysis catalysts, the pyrolysis mechanism of kerogen, and the compatibility of different heating processes and catalysts. Furthermore, the paper proposes future research directions and prospects for oil shale in-situ catalytic technology, including reservoir modification, highefficiency catalyst synthesis, injection processes, and high-efficiency heating technology. These insights serve as valuable technical references for the advancement of oil shale in-situ catalytic technology. 展开更多
关键词 Oil shale In-situ catalytic technology Pyrolysis catalyst Kerogen pyrolysis mechanism
下载PDF
Modeling Tracer Flow Characteristics in Different Types of Pores: Visualization and Mathematical Modeling 被引量:1
12
作者 Tongjing Liu Weixia Liu +6 位作者 Pengxiang Diwu Gaixing Hu TingXu Yuqi Li Zhenjiang You Runwei Qiao Jia Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第6期1205-1222,共18页
Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tra... Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tracer transport,this paper demonstrates microscopic experiments at pore level and proposes an improved mathematical model for tracer transport.The visualization results show a faster tracer movement into movable water than it into bound water,and quicker occupancy in flowing pores than in storage pores caused by the difference of tracer velocity.Moreover,the proposed mathematical model includes the effects of bound water and flowing porosity by applying interstitial flow velocity expression.The new model also distinguishes flowing and storage pores,accounting for different tracer transport mechanisms(dispersion,diffusion and adsorption)in different types of pores.The resulting analytical solution better matches with tracer production data than the standard model.The residual sum of squares(RSS)from the new model is 0.0005,which is 100 times smaller than the RSS from the standard model.The sensitivity analysis indicates that the dispersion coefficient and flowing porosity shows a negative correlation with the tracer breakthrough time and the increasing slope,whereas the superficial velocity and bound water saturation show a positive correlation. 展开更多
关键词 Tracer flow characteristics different types of pores interstitial flow velocity visualization and mathematical modeling tracer concentration prediction model
下载PDF
Synthesis of Poly(AAm-<i>co</i>-AA) and Investigation of its Swelling Behavior: Using Response Surface Methodology (RSM)
13
作者 Samira Heidari Jafar Saberi Doust Feridun Esmaeilzadeh 《Modeling and Numerical Simulation of Material Science》 2018年第4期65-78,共14页
Unwanted water production together with oil and gas production is a striking problem in oil and gas industries, and many approaches have been examined to overcome this major problem. Preformed particle gels (PPGs) sho... Unwanted water production together with oil and gas production is a striking problem in oil and gas industries, and many approaches have been examined to overcome this major problem. Preformed particle gels (PPGs) showed dramatically good properties for this purpose in mature oil and gas reservoirs. In this study, we carefully synthesized an efficient series of PPGs with using a design of experiments (DOE) software. Acrylamide (AAm)/Acrylic acid (AA) mole ratio, N,N’-methylenebisacrylamide (MBA) mole percentage and swelling time were considered as key parameters to examine PPG swelling behavior. Our results presented a detailed empirical correlation, which could significantly predict the swelling capacity of PPGs in CaCl2 salt solution (200,000 ppm). 展开更多
关键词 Response Surface METHODOLOGY (RSM) Optimization Synthesis Water CONFORMANCE
下载PDF
Research Progress and Prospect of Well Integrity Technology
14
作者 Lei Ma Kui Zhang +3 位作者 Junfeng Xie Liang Yuan Hailong Geng Kun Ning 《Journal of Power and Energy Engineering》 2020年第7期45-54,共10页
Well integrity technology can effectively ensure the safety of the entire life cycle of oil and gas wells. With the exploration and development of more and more high-temperature, high-pressure, high-yield and deep wel... Well integrity technology can effectively ensure the safety of the entire life cycle of oil and gas wells. With the exploration and development of more and more high-temperature, high-pressure, high-yield and deep wells, and the constantly increasing requirements for safety and environmental protection in various countries, well integrity technology has become a research hot spot in the oil industry. Based on the analysis of the four basic concepts of well integrity: full life cycle, well integrity management system, well barrier, and risk assessment, this article conducts a comparative analysis of the development history of well integrity technologies at home and abroad, and systematically summarizes foreign wells. The current status of integrity technology, based on the above investigation and analysis, puts forward suggestions for the next development direction of well integrity technology, which has certain guiding significance for the development of the integrity of the next step. 展开更多
关键词 Well Integrity Basic Concept Development Course Technology Status PROSPECT
下载PDF
Effect of gravel on rock failure in glutenite reservoirs under different confining pressures
15
作者 Jian-Tong Liu Jian-Bo Wang +5 位作者 Hong-Kui Ge Wei Zhou Bei-Bei Chen Xiao-Di Li Xian-Jie Xue Sen-Lin Luo 《Petroleum Science》 SCIE EI CSCD 2023年第5期3022-3036,共15页
Due to the existence of gravel,glutenite is heterogeneous and different from fine-grained rocks such as sandstone and shale in structure.To fully understand the effect of gravel on failure mode in glutenite,we perform... Due to the existence of gravel,glutenite is heterogeneous and different from fine-grained rocks such as sandstone and shale in structure.To fully understand the effect of gravel on failure mode in glutenite,we performed triaxial compression tests on different glutenites.The results indicate that failure modes of glutenite are complex due to the existence of gravel.Under different confining pressures,three failure modes were observed.The first failure mode,a tensile failure under uniaxial compression,produces multiple tortuous longitudinal cracks.In this failure mode,the interaction between gravels provides the lateral tensile stress for rock splitting.The second failure mode occurs under low and medium confining pressure and produces a crack band composed of micro-cracks around gravels.This failure mode conforms to the Mohr-Coulomb criterion and is generated by shear failure.In this failure mode,shear dilatancy and shear compaction may occur under different confining pressures to produce different crack band types.In the second failure mode,gravel-induced stress concentration produces masses of initial micro-cracks for shear cracking,and gravels deflect the fracture surfaces.As a result,the fracture is characterized by crack bands that are far broader than in fine-grained rocks.The third failure mode requires high confining pressure and produces disconnected cracks around gravels without apparent crack bands.In this failure mode,the gravel rarely breaks,indicating that the formation of these fractures is related to the deformation of the matrix.The third failure mode requires lower confining pressure in glutenite with weak cement and matrix support.Generally,unlike fine-grained rocks,the failure mode of glutenite is not only controlled by confining pressure but also by the gravel.The failure of glutenite is characterized by producing cracks around gravels.These cracks are produced by different mechanisms and distributed in different manners under different confining pressures to form different fracture patterns.Therefore,understanding the rock microstructure and formation stress state is essential in guiding glutenite reservoir development. 展开更多
关键词 GLUTENITE HETEROGENEITY Failure mode Triaxial compression test Shear dilatancy Shear compaction
下载PDF
Evaluation of hydraulic fracturing of horizontal wells in tight reservoirs based on the deep neural network with physical constraints
16
作者 Hong-Yan Qu Jian-Long Zhang +3 位作者 Fu-Jian Zhou Yan Peng Zhe-Jun Pan Xin-Yao Wu 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1129-1141,共13页
Accurate diagnosis of fracture geometry and conductivity is of great challenge due to the complex morphology of volumetric fracture network. In this study, a DNN (deep neural network) model was proposed to predict fra... Accurate diagnosis of fracture geometry and conductivity is of great challenge due to the complex morphology of volumetric fracture network. In this study, a DNN (deep neural network) model was proposed to predict fracture parameters for the evaluation of the fracturing effects. Field experience and the law of fracture volume conservation were incorporated as physical constraints to improve the prediction accuracy due to small amount of data. A combined neural network was adopted to input both static geological and dynamic fracturing data. The structure of the DNN was optimized and the model was validated through k-fold cross-validation. Results indicate that this DNN model is capable of predicting the fracture parameters accurately with a low relative error of under 10% and good generalization ability. The adoptions of the combined neural network, physical constraints, and k-fold cross-validation improve the model performance. Specifically, the root-mean-square error (RMSE) of the model decreases by 71.9% and 56% respectively with the combined neural network as the input model and the consideration of physical constraints. The mean square error (MRE) of fracture parameters reduces by 75% because the k-fold cross-validation improves the rationality of data set dividing. The model based on the DNN with physical constraints proposed in this study provides foundations for the optimization of fracturing design and improves the efficiency of fracture diagnosis in tight oil and gas reservoirs. 展开更多
关键词 Evaluation of fracturing effects Tight reservoirs Physical constraints Deep neural network Horizontal wells Combined neural network
下载PDF
Study of asphaltene reaggregation in toluene/heptane mixture by dynamic and static light scattering
17
作者 Vladimir N.Kuryakov 《Petroleum Research》 EI 2024年第1期48-54,共7页
This paper presents the study of the effect of multiple ultrasonic impacts on submicron asphaltene aggregates in a toluene/heptane solution,conducted with dynamic light scattering technique.The objects of the study we... This paper presents the study of the effect of multiple ultrasonic impacts on submicron asphaltene aggregates in a toluene/heptane solution,conducted with dynamic light scattering technique.The objects of the study were four samples of asphaltenes obtained from four different oils.For all samples,the change in the average size of the asphaltene submicron aggregates with time was measured after the addition of a precipitant(heptane)to a solution of asphaltenes in toluene at an amount above the threshold concentration.Asphaltene aggregates formed in solution after the addition of the precipitant and were subjected to ultrasonic treatment,which led to the destruction of the asphaltene aggregates.Aggregation of destroyed asphaltenes was observed.The kinetics of this aggregation were similar to the kinetics of aggregation of asphaltenes after the addition of a precipitant.Multiple iterations of asphaltene aggregate destruction in the sample led to a significant change in the kinetics of aggregation:the growth of aggregates slowed and stabilized at a size of approximately 200 nm and 30 nm for the different studied samples. 展开更多
关键词 ASPHALTENES AGGREGATION Sonication Dynamic light scattering Re-aggregation Colloidal stability Resins
原文传递
FTIR analysis and monitoring of used synthetic oils operated under similar driving conditions 被引量:2
18
作者 Artur WOLAK Wojciech KRASODOMSKI Grzegorz ZAJAC 《Friction》 SCIE CSCD 2020年第5期995-1006,共12页
The processes of degradation of engine oils operated in passenger cars of a uniform fleet of 25 vehicles were analyzed for oxidation content using infrared (IR) spectroscopy. As part of the experiment, the changes in ... The processes of degradation of engine oils operated in passenger cars of a uniform fleet of 25 vehicles were analyzed for oxidation content using infrared (IR) spectroscopy. As part of the experiment, the changes in engine oils occurring during actual operation (under conditions which can be described as "harsh", i.e., short distance driving, frequent starting of the engine, and extended engine idling) have been observed. An evaluation of the Fourier transform infrared spectroscopy (FTIR) spectrum of an engine oil sample was presented. The infrared spectra of both fresh and used oils were recorded with the Thermo Nicolett IS5. The tests were conducted according to the Appendix A2 of ASTM 2412. For the used engine oil differentiation process, FTIR spectra were analyzed in the regions of 1,700–2,000 cm-1 and 3,600–3,700 cm-1. The FTIR spectrometry is demonstrated to be effective for the analysis and monitoring of processes of oxidation and shown to provide rapid and accurate information relating to the aging process of engine oils. The results may facilitate decision-making regarding the service life of engine oils. The achieved dependencies can make it possible to upgrade the sensor assembly consisting of an FTIR source. 展开更多
关键词 Fourier transform infrared spectroscopy(FTIR) RELIABILITY MODELLING oil condition monitoring oil oxidation oil change interval
原文传递
Experimental evaluation of thiamine as a new clay swelling inhibitor 被引量:1
19
作者 Saeed Parvizi Ghaleh Elnaz Khodapanah Seyyed Alireza Tabatabaei-Nezhad 《Petroleum Science》 SCIE CAS CSCD 2020年第6期1616-1633,共18页
This study aims at evaluating the performance of thiamine as a new eco-friendly shale inhibitor in water-based drilling fluids(WBDFs).The evaluation experiments include sedimentation,bentonite inhibition,filtration,ze... This study aims at evaluating the performance of thiamine as a new eco-friendly shale inhibitor in water-based drilling fluids(WBDFs).The evaluation experiments include sedimentation,bentonite inhibition,filtration,zeta potential,thermal gravimetric analysis,scanning electron microscopy,X-ray diffraction,shale cuttings recovery,linear swelling and Fourier transform infrared spectroscopy(FTIR).The performance of thiamine was compared to potassium chloride.In contrast to deionized water,the aqueous solution of thiamine exhibited greater power to inhibit montmorillonite(Mt)dispersion,much more Mt loading capacity(280 g/L)and fluid loss,lower Mt mass loss,larger aggregated Mt particles,lower interlayer space of the Mt particles,less shale cuttings disintegration and lower linear swelling.Adsorption of thiamine on Mt led to a significant shift in the value of zeta potential(from-17.1 to+8.54 mV).Thiamine demonstrated superior inhibitive performance than potassium chloride.FTIR analysis confirmed that thiamine is adsorbed on Mt particles.The compatibility test revealed the compatibility of thiamine with conventional WBDF additives.It was concluded that the main probable inhibition mechanisms of thiamine are the cation exchange and Mt surface coating.In view of its prominent inhibition capacity and great environmental acceptability,thiamine is a promising inhibitor for drilling in water-sensitive formations. 展开更多
关键词 Shale inhibitor THIAMINE Sodium bentonite SWELLING HYDRATION MONTMORILLONITE
下载PDF
Numerical simulation on the multiple planar fracture propagation with perforation plugging in horizontal wells 被引量:1
20
作者 Ming-Hui Li Fu-Jian Zhou +5 位作者 Bo Wang Xiao-Dong Hu Dao-Bing Wang Xiao-Ying Zhuang Shao-Bo Han Guo-Peng Huang 《Petroleum Science》 SCIE CAS CSCD 2022年第5期2253-2267,共15页
Intra-stage multi-cluster temporary plugging and diverting fracturing(ITPF)is one of the fastest-growing techniques to obtain uniform reservoir stimulation in shale gas reservoirs.However,propagation geometries of mul... Intra-stage multi-cluster temporary plugging and diverting fracturing(ITPF)is one of the fastest-growing techniques to obtain uniform reservoir stimulation in shale gas reservoirs.However,propagation geometries of multiple fractures during ITPF are not clear due that the existing numerical models cannot capture the effects of perforation plugging.In this paper,a new three-dimensional FEM based on CZM was developed to investigate multiple planar fracture propagation considering perforation plugging during ITPF.Meanwhile,the fluid pipe element and its subroutine were first developed to realize the flux partitioning before or after perforation plugging.The results showed that the perforation plugging changed the original distribution of the number of perforations in each fracture,thus changing the flux partitioning after perforation plugging,which could eliminate the effect of stress interference between multiple fractures and promote a uniform fluid distribution.The standard deviation of fluid distribution in the perforation plugging case was only 8.48%of that in the non-diversion case.Furthermore,critical plugging parameters have been investigated quantitatively.Specifically,injecting more diverters will create a higher fluid pressure rise in the wellbore,which will increase the risk of wellbore integrity.Comprehensively considering pressure rise and fluid distribution,the number of diverters should be 50%of the total number of perforations(N_(pt)),whose standard deviation of fluid distribution of multiple fractures was lower than those in the cases of injecting 10%N_(pt),30%N_(pt)and 70%N_(pt).The diverters should be injected at an appropriate timing,i.e.40%or 50%of the total fracturing time(tft),whose standard deviation of the fluid distribution was only about 20%of standard deviations in the cases of injecting at20%tftor 70%tft.A single injection with all diverters can maintain high bottom-hole pressure for a longer period and promote a more uniform fluid distribution.The standard deviation of the fluid distribution in the case of a single injection was 43.62%-55.41%of the other cases with multiple injection times.This study provides a meaningful perspective and some optimal plugging parameters on the field design during IPTF. 展开更多
关键词 Hydraulic fracturing Multi-cluster fracture propagation Perforation plugging Finite element method Fluid distribution
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部