期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Influences of pore fluid on gas production from hydrate-bearing reservoir by depressurization
1
作者 Yi-Fei Sun Bo-Jian Cao +6 位作者 Hong-Nan Chen Yin-Long Liu Jin-Rong Zhong Liang-Liang Ren Guang-Jin Chen Chang-Yu Sun Dao-Yi Chen 《Petroleum Science》 SCIE EI CAS CSCD 2023年第2期1238-1246,共9页
In addition to the temperature and pressure conditions,the pore fluid composition and migration behavior are also crucial to control hydrate decomposition in the exploitation process.In this work,to investigate the ef... In addition to the temperature and pressure conditions,the pore fluid composition and migration behavior are also crucial to control hydrate decomposition in the exploitation process.In this work,to investigate the effects of these factors,a series of depressurization experiments were carried out in a visible one-dimensional reactor,using hydrate reservoir samples with water saturations ranging from 20%to 65%.The results showed a linear relationship between gas production rates and gas saturations of the reservoir,suggesting that a larger gas-phase space was conducive to hydrate decomposition and gas outflow.Therefore,the rapid water production in the early stage of hydrate exploitation could release more gas-phase space in the water-rich reservoir,which in turn improved the gas production efficiency.Meanwhile,the spatiotemporal evolution of pore fluids could lead to partial accelerated decomposition or secondary formation of hydrates.In the unsealed reservoir,the peripheral water infiltration kept reservoir at a high water saturation,which hindered the overall production process and caused higher water production.Importantly,depressurization assisted with the N2 sweep could displace the pore water rapidly.According to the results,it is recommended that using the short-term N2 sweep as an auxiliary means in the early stage of depressurization to expand the gas-phase space in order to achieve the highest production efficiency. 展开更多
关键词 CH4 hydrate Water saturation DEPRESSURIZATION Gas-phase space N2 sweep
下载PDF
Plugging property and displacement characters of a novel high-temperature resistant polymer nanoparticle
2
作者 Zhi-Yong Wang Mei-Qin Lin +3 位作者 Huai-Ke Li Zhao-Xia Dong Juan Zhang Zi-Hao Yang 《Petroleum Science》 SCIE CAS CSCD 2022年第1期387-396,共10页
The goal of the research was to investigate the profile control and oil displacement characteristics of the polymer nanoparticles after high temperature swelling.The displacement parameters showed considerable influen... The goal of the research was to investigate the profile control and oil displacement characteristics of the polymer nanoparticles after high temperature swelling.The displacement parameters showed considerable influence on the plugging effect of the high-temperature swelled polymer nanoparticles,such as the core permeability,concentration of nanoparticles in the suspension,swelling time and swelling temperature,which makes it flexible to control the plugging effect by controlling displacement experiments conditions.Experimental results show that polymer nanoparticles dispersion system with a concentration of 500 mg/L is suitable for cores plugging with a permeability of 30×10^(-3)-150×10^(-3)μm^(2),even after aging at 150℃ for three months.The shunt flow experiments show that when the displacement factors are optimal values,the polymer nanoparticles after high temperature swelling to plug the high-permeability layer selectivity and almost do not clog the low-permeability layer.Oil recovery of homogeneous artificial core displacement experiment and a heterogeneous double-tube cores model are increased by 20%and 10.4%on the basis of water flooding.The polymer nanoparticles can be a great help for petroleum engineers to better apply this deep profile control and flooding technology. 展开更多
关键词 Polymer nanoparticles High temperature resistance Plugging property EOR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部