Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical tool for real- time diagnostics and detection of multiple elements deposited at the first wall of magnetically confined plasma ft^sion devices. Re...Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical tool for real- time diagnostics and detection of multiple elements deposited at the first wall of magnetically confined plasma ft^sion devices. Recently, we have tested LIBS in our laboratory for application to in situ real-time diagnostics in the fusion device EAST. In this study, we applied polarization- resolved LIBS (PR-LIBS) to reduce the background continuum and enhance the resolution and sensitivity of LIBS. We used aluminium (A1) (as a substitute for Be) and the first wall materials tungsten (W) and molybdenum (Mo) to investigate polarized continuum emission and signal-to- background ratio (SBR). A Nd:YAG laser with first, second and third harmonics was used to produce plasma. The effects of the laser polarization plane, environmental pressure and polarizer detection angle were investigated. The spectra obtained without using a polarizer (i.e. LIBS) were compared with those obtained with a polarizer (PR-LIBS). Distribution of emission spectral intensity was observed to follow Malus' law with respect to variation in the angle of detection of the polarizer. The spectra obtained by PR-LIBS had a higher SBR and greater stability than those obtained by LIBS, thereby enhancing the reliability of LIBS for quantitative analyses. A comparison of A1, Mo and W showed that W exhibited a higher continuum with stronger polarization than the low-Z elements.展开更多
One of the great difficulties in understanding nitrogen plasma elementary processes is the lack of an available database of the cross-sections of electron-impact excitations and radiations. Ab initio calculations of v...One of the great difficulties in understanding nitrogen plasma elementary processes is the lack of an available database of the cross-sections of electron-impact excitations and radiations. Ab initio calculations of vibrational excitation cross sections for electron collisions with nitrogen molecules in low-lying states using similarity function approach, such as a-a', a-w, B-B' and B-W transition systems, are reported here for the first time. In the meantime, the average excitation energies of neighboring levels of these systems have been calculated. In order to obtain the cross sections, accurate spectroscopic constants and transition dipole moments have been investigated. Potential energy curves and other electronic transition dipole moments for the low-lying states of N2 have been re-evaluated using complete active space self-consistent field (CASSCF) approach with aug-cc-pVqZ basis set. The calculated cross-sections could provide a database for studying the elementary processes and the properties in N2 plasma.展开更多
In this study, the terahertz time-domain spectroscopy (THz-TDS) of crystalline methedrine, which is one of the illegal drugs, is performed using molecular dynamics simulation by the Fourier transform of time derivativ...In this study, the terahertz time-domain spectroscopy (THz-TDS) of crystalline methedrine, which is one of the illegal drugs, is performed using molecular dynamics simulation by the Fourier transform of time derivative auto-correlation functions of the dipole moment. In order to accurately detect the drugs from samples, it is necessary to build a complete database for terahertz spectra under different external conditions from theoretical calculation, which are hardly obtained from the experiments directly. Our results show remarkable consistency with the available experimental data in the frequency range of 10 - 100 cm-1 indicating that the presented method has significant capability to simulate terahertz spectra at various conditions. We investigated the effects of temperature and pressure on THz-TDS by simulating the system at temperature range between 78.4 K and 400 K at pressures up to 100 atm. Results show the spectral features of THz-TDS both in intensity and profile are highly sensitive to the variation of temperature and with a lower magnitude to the variation of pressure. The vanishing, rebuilding and shifting of spectral peaks are due to the complex mechanisms such as the anharmonicity, shifting in the vibration energy levels, formation and destruction of hydrogen-binding and the deformation of the potential energy surface during the environment changing. This improved our understanding for complicated THz-TDS of crystalline methedrine and would be useful for assignment of the practical measurements.展开更多
Lead-free perovskite Cs_(2)AgBiBr_(6)manifests great potential in developing high-performance,environmentally friendly,solution-processable photodetectors(PDs).However,due to the relatively large energy bandgap,the sp...Lead-free perovskite Cs_(2)AgBiBr_(6)manifests great potential in developing high-performance,environmentally friendly,solution-processable photodetectors(PDs).However,due to the relatively large energy bandgap,the spectrum responses of Cs_(2)AgBiBr_(6)PDs are limited to the ultraviolet and visible region with wavelengths shorter than 560 nm.In this work,a broadband Cs_(2)AgBiBr_(6)PD covering the ultraviolet,visible,and near infrared(NIR)range is demonstrated by incorporating titanium nitride(TiN)nanoparticles that are prepared with the assistance of self-assembled polystyrene sphere array.In addition,an atomically thick Al2O3layer is introduced at the interface between the Cs_(2)AgBiBr_(6)film and TiN nanoparticles to alleviate the dark current deterioration caused by nanoparticle incorporation.As a result,beyond the spectrum range where Cs_(2)AgBiBr_(6)absorbs light,the external quantum efficiency(EQE)of the TiN nanoparticle incorporated Cs_(2)AgBiBr_(6)PD is enhanced significantly compared with that of the control,displaying enhancement factors as high as 2000 over a broadband NIR wavelength range.The demonstrated enhancement in EQE arises from the photocurrent contribution of plasmonic hot holes injected from TiN nanoparticles into Cs_(2)AgBiBr_(6).This work promotes the development of broadband solution-processable perovskite PDs,providing a promising strategy for realizing photodetection in the NIR region.展开更多
GaN PIN betavoltaic nuclear batteries are demonstrated in this work. GaN epitaxial layers were grown on 2-inch sapphire sub-strates by MOCVD, and then the GaN PIN nuclear batteries were fabricated. Current-voltage (...GaN PIN betavoltaic nuclear batteries are demonstrated in this work. GaN epitaxial layers were grown on 2-inch sapphire sub-strates by MOCVD, and then the GaN PIN nuclear batteries were fabricated. Current-voltage (l-V) characteristic shows that the small leakage currents are 0.12 nA at 0 V and 1.76 nA at -10 V, respectively. With 147Pm the irradiation source, the maximum open circuit voltage and maximum short circuit current are 1.07 V and 0.554 nA, respectively. The fill factor (FF) of 24.7% for the battery was been obtained. The limited performance of the devices is mainly due to the low energy deposition in the microbatteries. Therefore, the GaN nuclear microbatteries are expected to be optimized by growing high quality GaN films, thin dead layer and so on.展开更多
基金supported by the National Magnetic Confinement Fusion Science Program of China(No.2013GB109005)National Natural Science Foundation of China(Nos.11175035,10875023)+1 种基金Chinesisch-Deutsches Forschungs Project(GZ768)the Fundamental Research Funds for the Central Universities(DUT12ZD(G)01)
文摘Laser-induced breakdown spectroscopy (LIBS) is a powerful analytical tool for real- time diagnostics and detection of multiple elements deposited at the first wall of magnetically confined plasma ft^sion devices. Recently, we have tested LIBS in our laboratory for application to in situ real-time diagnostics in the fusion device EAST. In this study, we applied polarization- resolved LIBS (PR-LIBS) to reduce the background continuum and enhance the resolution and sensitivity of LIBS. We used aluminium (A1) (as a substitute for Be) and the first wall materials tungsten (W) and molybdenum (Mo) to investigate polarized continuum emission and signal-to- background ratio (SBR). A Nd:YAG laser with first, second and third harmonics was used to produce plasma. The effects of the laser polarization plane, environmental pressure and polarizer detection angle were investigated. The spectra obtained without using a polarizer (i.e. LIBS) were compared with those obtained with a polarizer (PR-LIBS). Distribution of emission spectral intensity was observed to follow Malus' law with respect to variation in the angle of detection of the polarizer. The spectra obtained by PR-LIBS had a higher SBR and greater stability than those obtained by LIBS, thereby enhancing the reliability of LIBS for quantitative analyses. A comparison of A1, Mo and W showed that W exhibited a higher continuum with stronger polarization than the low-Z elements.
基金supported by National Natural Science Foundation of China(Nos.11175035,10875023)the National Magnetic Confinement Fusion Science Program of China(No.2013GB109005)+1 种基金Chinesisch-Deutsches Forschungsprojekt(GZ768)the Fundamental Research Fundsfor the Central Universities of China(No.DUT12ZD(G)01)
文摘One of the great difficulties in understanding nitrogen plasma elementary processes is the lack of an available database of the cross-sections of electron-impact excitations and radiations. Ab initio calculations of vibrational excitation cross sections for electron collisions with nitrogen molecules in low-lying states using similarity function approach, such as a-a', a-w, B-B' and B-W transition systems, are reported here for the first time. In the meantime, the average excitation energies of neighboring levels of these systems have been calculated. In order to obtain the cross sections, accurate spectroscopic constants and transition dipole moments have been investigated. Potential energy curves and other electronic transition dipole moments for the low-lying states of N2 have been re-evaluated using complete active space self-consistent field (CASSCF) approach with aug-cc-pVqZ basis set. The calculated cross-sections could provide a database for studying the elementary processes and the properties in N2 plasma.
文摘In this study, the terahertz time-domain spectroscopy (THz-TDS) of crystalline methedrine, which is one of the illegal drugs, is performed using molecular dynamics simulation by the Fourier transform of time derivative auto-correlation functions of the dipole moment. In order to accurately detect the drugs from samples, it is necessary to build a complete database for terahertz spectra under different external conditions from theoretical calculation, which are hardly obtained from the experiments directly. Our results show remarkable consistency with the available experimental data in the frequency range of 10 - 100 cm-1 indicating that the presented method has significant capability to simulate terahertz spectra at various conditions. We investigated the effects of temperature and pressure on THz-TDS by simulating the system at temperature range between 78.4 K and 400 K at pressures up to 100 atm. Results show the spectral features of THz-TDS both in intensity and profile are highly sensitive to the variation of temperature and with a lower magnitude to the variation of pressure. The vanishing, rebuilding and shifting of spectral peaks are due to the complex mechanisms such as the anharmonicity, shifting in the vibration energy levels, formation and destruction of hydrogen-binding and the deformation of the potential energy surface during the environment changing. This improved our understanding for complicated THz-TDS of crystalline methedrine and would be useful for assignment of the practical measurements.
基金National Natural Science Foundation of China(U21A20496,62174117,12104334,62205235)Key Research and Development Program of Shanxi Province(202102150101007)+5 种基金Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province(20230011)Research Program Supported by Shanxi-Zheda Institute of Advanced Materials and Chemical Engineering(2021SX-FR008,2022SX-TD020)Central Government Guides Local Funds for Scientific and TechnologicalDevelopment(YDZJSX20231A010,YDZJSX2021A012)Natural Science Foundation of Shanxi Province(20210302123154,20210302123169)Research Project Supported by Shanxi Scholarship Council of China(2021-033)State Key Laboratory Program of Quantum Optics and Quantum Optics Devices(KF202306)。
文摘Lead-free perovskite Cs_(2)AgBiBr_(6)manifests great potential in developing high-performance,environmentally friendly,solution-processable photodetectors(PDs).However,due to the relatively large energy bandgap,the spectrum responses of Cs_(2)AgBiBr_(6)PDs are limited to the ultraviolet and visible region with wavelengths shorter than 560 nm.In this work,a broadband Cs_(2)AgBiBr_(6)PD covering the ultraviolet,visible,and near infrared(NIR)range is demonstrated by incorporating titanium nitride(TiN)nanoparticles that are prepared with the assistance of self-assembled polystyrene sphere array.In addition,an atomically thick Al2O3layer is introduced at the interface between the Cs_(2)AgBiBr_(6)film and TiN nanoparticles to alleviate the dark current deterioration caused by nanoparticle incorporation.As a result,beyond the spectrum range where Cs_(2)AgBiBr_(6)absorbs light,the external quantum efficiency(EQE)of the TiN nanoparticle incorporated Cs_(2)AgBiBr_(6)PD is enhanced significantly compared with that of the control,displaying enhancement factors as high as 2000 over a broadband NIR wavelength range.The demonstrated enhancement in EQE arises from the photocurrent contribution of plasmonic hot holes injected from TiN nanoparticles into Cs_(2)AgBiBr_(6).This work promotes the development of broadband solution-processable perovskite PDs,providing a promising strategy for realizing photodetection in the NIR region.
基金supported by the National Natural Science Foundation of China(Grant No.10875084)the Natural Science Foundation of Jiangsu Province(Grant No.BK2008174)+2 种基金the Applied Science Foundation of Suzhou(Grant No.SYJG0915)the National Basic Research Program of China(Grant No.G2009CB929300)supported by Department of Nuclear Science and Engineering,Nanjing University of Aeronautics and Astronautics
文摘GaN PIN betavoltaic nuclear batteries are demonstrated in this work. GaN epitaxial layers were grown on 2-inch sapphire sub-strates by MOCVD, and then the GaN PIN nuclear batteries were fabricated. Current-voltage (l-V) characteristic shows that the small leakage currents are 0.12 nA at 0 V and 1.76 nA at -10 V, respectively. With 147Pm the irradiation source, the maximum open circuit voltage and maximum short circuit current are 1.07 V and 0.554 nA, respectively. The fill factor (FF) of 24.7% for the battery was been obtained. The limited performance of the devices is mainly due to the low energy deposition in the microbatteries. Therefore, the GaN nuclear microbatteries are expected to be optimized by growing high quality GaN films, thin dead layer and so on.