Three-dimensionally ordered self-assembly of monodispersed colloidal SiO2 particles involving a structure with periodic alternation of refractive indices represents an advanced field of particuology, colloidal chemist...Three-dimensionally ordered self-assembly of monodispersed colloidal SiO2 particles involving a structure with periodic alternation of refractive indices represents an advanced field of particuology, colloidal chemistry, materials science, optical physics and information science. Study on such self-assembly not only lays the foundation for the development of advanced functional materials, but also is significant in understanding the principles of nano- and micro-scale processes. Recent progress in three-dimensionally ordered self-assembly of colloidal SiO2 particles is reviewed, inclusive of the authors investigations.展开更多
基金supported by the Chinese National Key Basic Research Special Fund(Grant No.2001CB6104)the National Natural Science Foundation of China(Grant No.20076027)
文摘Three-dimensionally ordered self-assembly of monodispersed colloidal SiO2 particles involving a structure with periodic alternation of refractive indices represents an advanced field of particuology, colloidal chemistry, materials science, optical physics and information science. Study on such self-assembly not only lays the foundation for the development of advanced functional materials, but also is significant in understanding the principles of nano- and micro-scale processes. Recent progress in three-dimensionally ordered self-assembly of colloidal SiO2 particles is reviewed, inclusive of the authors investigations.