Polyploidization plays a key role in plant evolution,but the forces driving the fate of homoeologs in polyploid genomes,i.e.,paralogs resulting from a whole-genome duplication(WGD)event,remain to be elucidated.Here,we...Polyploidization plays a key role in plant evolution,but the forces driving the fate of homoeologs in polyploid genomes,i.e.,paralogs resulting from a whole-genome duplication(WGD)event,remain to be elucidated.Here,we present a chromosome-scale genome assembly of tetraploid scarlet sage(Salvia splendens),one of the most diverse ornamental plants.We found evidence for three WGD events following an older WGD event shared by most eudicots(theγevent).A comprehensive,spatiotemporal,genome-wide analysis of homoeologs from the most recent WGD unveiled expression asymmetries,which could be associated with genomic rearrangements,transposable element proximity discrepancies,coding sequence variation,selection pressure,and transcription factor binding site differences.The observed differences between homoeologs may reflect the first step toward sub-and/or neofunctionalization.This assembly provides a powerful tool for understanding WGD and gene and genome evolution and is useful in developing functional genomics and genetic engineering strategies for scarlet sage and other Lamiaceae species.展开更多
基金This study was supported by the National Natural Science Foundation(31600527)The Fundamental Research Funds for the Central Universities in Beijing Forestry University(2018BLCB08)+2 种基金the Project of Construction of World Class Universities in Beijing Forestry University(2019XKJS0308)Y.V.d.P.acknowledges funding from the European Research Council(ERC)under the European Union’s Horizon 2020 research and innovation program(grant agreement no.833522)from Ghent University(Methusalem funding,BOF.MET.2021.0005.01).
文摘Polyploidization plays a key role in plant evolution,but the forces driving the fate of homoeologs in polyploid genomes,i.e.,paralogs resulting from a whole-genome duplication(WGD)event,remain to be elucidated.Here,we present a chromosome-scale genome assembly of tetraploid scarlet sage(Salvia splendens),one of the most diverse ornamental plants.We found evidence for three WGD events following an older WGD event shared by most eudicots(theγevent).A comprehensive,spatiotemporal,genome-wide analysis of homoeologs from the most recent WGD unveiled expression asymmetries,which could be associated with genomic rearrangements,transposable element proximity discrepancies,coding sequence variation,selection pressure,and transcription factor binding site differences.The observed differences between homoeologs may reflect the first step toward sub-and/or neofunctionalization.This assembly provides a powerful tool for understanding WGD and gene and genome evolution and is useful in developing functional genomics and genetic engineering strategies for scarlet sage and other Lamiaceae species.