The electric field induced Lyman-a emission diagnostic aims to provide a non intrusive and precise measurement of the electric field in plasma, using a beam of hydrogen atoms prepared in the metastable 2s state. The m...The electric field induced Lyman-a emission diagnostic aims to provide a non intrusive and precise measurement of the electric field in plasma, using a beam of hydrogen atoms prepared in the metastable 2s state. The metastable particles are obtained by means of a proton beam extracted from a hydrogen plasma source, and neutralised by interaction with vaporised caesium. When a 2s atom enters a region where an electric field is present, it undergoes a transition to the 2p state (Stark mixing). It then quickly decays to the ground level, emitting Lyman-a radiation, which is collected by a photomultiplier. The 2s → 2p transition rate is proportional to the square of the magnitude of the electric field, and depends on the field oscillation frequency (with peaks around l GHz). By measuring the intensity of the Lyman-a radiation emitted by the beam it is possible to determine the magnitude of the field in a defined region. In this work, an analysis of the behaviour of the diagnostic under static or radiofrequency electric field is presented. Electric field simulations obtained with a finite element solver of Maxwell equations, combined with theoretical calculations of the Stark mixing transition rate, are used to develop a model for the interpretation of photomultiplier data. This method shows good agreement with experimental results for the static field case, and allows to measure the field magnitude for the oscillating case.展开更多
We present a Stark–Zeeman spectral line-shape model and the associated numerical code,PPPB,designed to provide fast and accurate line shapes for arbitrary atomic systems for a large range of plasma conditions.PPPB is...We present a Stark–Zeeman spectral line-shape model and the associated numerical code,PPPB,designed to provide fast and accurate line shapes for arbitrary atomic systems for a large range of plasma conditions.PPPB is based on the coupling of the PPP code-a Stark-broadened spectral line-shape code developed for multi-electron ion spectroscopy in hot dense plasmas-and the MASCB code developed recently to generate B-field-dependent atomic physics.The latter provides energy levels,statistical weights,and reduced matrix elements of multi-electron radiators by diagonalizing the atomic Hamiltonian that includes the well know B-dependent term.These are then used as inputs to PPP working in the standard line-broadening approach,i.e.,using the quasi-static ion and impact electron approximations.The effects of ion dynamics are introduced by means of the frequency fluctuation model,and the physical model of electron broadening is based on the semi-classical impact approximation including the effects of a strong collision term,interference,and cyclotron motion.Finally,to account for polarization effects,the output profiles are calculated for a given angle of observation with respect to the direction of the magnetic field.The potential of this model is presented through Stark–Zeeman spectral line-shape calculations performed for various experimental conditions.展开更多
Impurity transport was investigated at both edge and core regions in large helical de- vice (LHD) with developed spectroscopic instruments which can measure one- and two-dimensional distributions of impurities. The ...Impurity transport was investigated at both edge and core regions in large helical de- vice (LHD) with developed spectroscopic instruments which can measure one- and two-dimensional distributions of impurities. The edge impurity behavior was studied recently using four carbon resonant transitions in different ionization stages of CIII (977A), CIV (1548A), CV (40.3A) and CVI (33.7A). When the line-averaged electron density, ne, is increased from 1 to 6 × 10^13 cm-3, the ratio of (CIII^CIV)/ne increases while the ratio of (CV+CVI)/ne decreases. Here, CIII^CIV (CV+CVI) expresses the sum of CIII (CV) and CIV (CVI) intensities. The CIII+CIV indicates the carbon influx and the CV+CVI indicates the emissions through the transport in the ergodic layer. The result thus gives experimental evidence on the impurity screening by the ergodic layer in LHD, which is also supported by a three-dimensional edge particle simulation. The core impu- rity behavior is also studied in high-density discharges (ne 〈 1 × 10^15 cm 3) with multi H2-pellets injection. It is found that the ratio of V/D (V: convection velocity, D: diffusion coefficient) decreases after pellet injection and Zeff profile shows a flat one at values of 1.1,-1.2. These results confirm no impurity accumulation occurs in high-density discharges. As a result, the iron density, rife, is analyzed to be 6 × 10^-7(=- nFe/ne) of which the amount can be negligible as radiation source even in such high-density discharges. One- and two-dimensional impurity distributions from space-resolved VUV and EUV spectrometers newly developed for further impurity transport study are also presented with their preliminary results.展开更多
This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with diffe...This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with different types of solid targets.It includes new experimental data obtained independently at several international laboratories.The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce.The major emphasis is put on the GHz frequency domain,which is the most damaging for electronics and may have important applications.The physics of electromagnetic emissions in other spectral domains,in particular THz and MHz,is also discussed.The theoretical models and numerical simulations are compared with the results of experimental measurements,with special attention to the methodology of measurements and complementary diagnostics.Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions,which may have promising applications.展开更多
文摘The electric field induced Lyman-a emission diagnostic aims to provide a non intrusive and precise measurement of the electric field in plasma, using a beam of hydrogen atoms prepared in the metastable 2s state. The metastable particles are obtained by means of a proton beam extracted from a hydrogen plasma source, and neutralised by interaction with vaporised caesium. When a 2s atom enters a region where an electric field is present, it undergoes a transition to the 2p state (Stark mixing). It then quickly decays to the ground level, emitting Lyman-a radiation, which is collected by a photomultiplier. The 2s → 2p transition rate is proportional to the square of the magnitude of the electric field, and depends on the field oscillation frequency (with peaks around l GHz). By measuring the intensity of the Lyman-a radiation emitted by the beam it is possible to determine the magnitude of the field in a defined region. In this work, an analysis of the behaviour of the diagnostic under static or radiofrequency electric field is presented. Electric field simulations obtained with a finite element solver of Maxwell equations, combined with theoretical calculations of the Stark mixing transition rate, are used to develop a model for the interpretation of photomultiplier data. This method shows good agreement with experimental results for the static field case, and allows to measure the field magnitude for the oscillating case.
基金supported by the EUROfusion Enabling Research work programme 2017(Grant No.CfP-AWP17-IFE-CEA-02).
文摘We present a Stark–Zeeman spectral line-shape model and the associated numerical code,PPPB,designed to provide fast and accurate line shapes for arbitrary atomic systems for a large range of plasma conditions.PPPB is based on the coupling of the PPP code-a Stark-broadened spectral line-shape code developed for multi-electron ion spectroscopy in hot dense plasmas-and the MASCB code developed recently to generate B-field-dependent atomic physics.The latter provides energy levels,statistical weights,and reduced matrix elements of multi-electron radiators by diagonalizing the atomic Hamiltonian that includes the well know B-dependent term.These are then used as inputs to PPP working in the standard line-broadening approach,i.e.,using the quasi-static ion and impact electron approximations.The effects of ion dynamics are introduced by means of the frequency fluctuation model,and the physical model of electron broadening is based on the semi-classical impact approximation including the effects of a strong collision term,interference,and cyclotron motion.Finally,to account for polarization effects,the output profiles are calculated for a given angle of observation with respect to the direction of the magnetic field.The potential of this model is presented through Stark–Zeeman spectral line-shape calculations performed for various experimental conditions.
基金the LHD project (NIFS08ULPP527)the JSPS-CAS Core-University program in the field of Plasma and Nuclear Fusion
文摘Impurity transport was investigated at both edge and core regions in large helical de- vice (LHD) with developed spectroscopic instruments which can measure one- and two-dimensional distributions of impurities. The edge impurity behavior was studied recently using four carbon resonant transitions in different ionization stages of CIII (977A), CIV (1548A), CV (40.3A) and CVI (33.7A). When the line-averaged electron density, ne, is increased from 1 to 6 × 10^13 cm-3, the ratio of (CIII^CIV)/ne increases while the ratio of (CV+CVI)/ne decreases. Here, CIII^CIV (CV+CVI) expresses the sum of CIII (CV) and CIV (CVI) intensities. The CIII+CIV indicates the carbon influx and the CV+CVI indicates the emissions through the transport in the ergodic layer. The result thus gives experimental evidence on the impurity screening by the ergodic layer in LHD, which is also supported by a three-dimensional edge particle simulation. The core impu- rity behavior is also studied in high-density discharges (ne 〈 1 × 10^15 cm 3) with multi H2-pellets injection. It is found that the ratio of V/D (V: convection velocity, D: diffusion coefficient) decreases after pellet injection and Zeff profile shows a flat one at values of 1.1,-1.2. These results confirm no impurity accumulation occurs in high-density discharges. As a result, the iron density, rife, is analyzed to be 6 × 10^-7(=- nFe/ne) of which the amount can be negligible as radiation source even in such high-density discharges. One- and two-dimensional impurity distributions from space-resolved VUV and EUV spectrometers newly developed for further impurity transport study are also presented with their preliminary results.
基金the framework of the EUROfusion Consortium and funded from the Euratom research and training programme 2014–2018 and 2019– 2020 under grant agreement No. 633053the ELI Beamlines Projects LQ1606 and 19-02545S with financial support from the Czech Science Foundation and the Ministry of Education, Youth and Sports of the Czech Republic+6 种基金support from the European Regional Development Fund, the project ELITAS CZ.02.1.01/0.0/0.0/16 013/0001793the National Programme of ‘Sustainability Ⅱ’ and ELI phase 2 CZ.02.1.01/0.0/0.0/15008/0000162The PETAL project was designed and built by the CEA under the financial auspices of the Region Nouvelle Aquitaine, the French Government and the European Unionsupported by EPSRC grants EP/K022415/1 and EP/R006202supported by the European Cluster of Advanced Laser Light Sources, EUCALL, which has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654220funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No. 654148 Laserlab-Europethe use of the EPOCH PIC code (developed under EPSRC grant EP/G054940/1).
文摘This paper provides an up-to-date review of the problems related to the generation,detection and mitigation of strong electromagnetic pulses created in the interaction of high-power,high-energy laser pulses with different types of solid targets.It includes new experimental data obtained independently at several international laboratories.The mechanisms of electromagnetic field generation are analyzed and considered as a function of the intensity and the spectral range of emissions they produce.The major emphasis is put on the GHz frequency domain,which is the most damaging for electronics and may have important applications.The physics of electromagnetic emissions in other spectral domains,in particular THz and MHz,is also discussed.The theoretical models and numerical simulations are compared with the results of experimental measurements,with special attention to the methodology of measurements and complementary diagnostics.Understanding the underlying physical processes is the basis for developing techniques to mitigate the electromagnetic threat and to harness electromagnetic emissions,which may have promising applications.