In the majority of rechargeable batteries including lithium-ion batteries,polyvinylidene fluoride(PVdF)binders are the most commonly used binder for both anode and cathode.However,using PVdF binder requires the organi...In the majority of rechargeable batteries including lithium-ion batteries,polyvinylidene fluoride(PVdF)binders are the most commonly used binder for both anode and cathode.However,using PVdF binder requires the organic solvent of N-methyl-2-pyrrolidone which is expensive,volatile,combustible,toxic,and has poor recyclability.Therefore,switching to aqueous electrode processing routes with non-toxic binders would provide a great leap forward towards the realization of ideally fully sustainable and environmentally friendly electrochemical energy storage devices.Various water-soluble binders(aqueous binders)were characterized and compared to the performance of conventional PVdF.Our study demonstrates that the electrochemical performance of Zn/MnO_(2) aqueous batteries is significantly improved by using sodium carboxymethyl cellulose(CMC)binder.In addition,CMC binders offer desirable adhesion,good wettability,homogeneous material distribution,and strong chemical stability at certain pH levels(3.5-5)without any decomposition for long-cycle life.展开更多
As mentioned by National Geographic(2017),70%of world’s population is expected to live in large apartment buildings by 2050.Today,buildings in cities generate 30%of world’s greenhouse gas emission or GHG(National Ge...As mentioned by National Geographic(2017),70%of world’s population is expected to live in large apartment buildings by 2050.Today,buildings in cities generate 30%of world’s greenhouse gas emission or GHG(National Geographic,2017).Major urban centers are committed to reducing greenhouse gases by 80%by 2050(IEA,2021).However,achieving such goals in rental properties is not easy.Landlords are hesitant to use high-efficiency technologies because,typically,tenants pay the utilities bill.However,that situation is rapidly changing.For example,New York City like other US cities,is considering a carbon cap on all large buildings(Local Law 97,2019).That means landlords will pay a carbon penalty if the building’s carbon footprint exceeds certain threshold no matter who uses that carbon.The Pacific Northwest National Laboratory(PNNL)has received funds from DOE(US Department of Energy)with the collaboration of a commercial partner to address emerging energy efficiency market opportunity in multi-family or rental housing as discussed above.It has partnered with a large national real estate owner in order to test a novel energy optimization method at a rental property in Tempe,Arizona.By using a seamless-integrated method of acquiring building’s operating data,the optimization approach essentially resets setpoints of different energy consuming equipment such as chillers,boilers,pumps,and fans.Data-driven optimization approach is pragmatic and easily transferrable to other buildings.The authors shall share the problem background,technical approach,and preliminary results.展开更多
CoFe2O4 nanoparticles(NPs)and surface modified with gold(Au)have been synthesized by a thermal decomposition method.The obtained NPs and formation of CoFe2O4@Au core–shell(CS)were confirmed by characterizing their st...CoFe2O4 nanoparticles(NPs)and surface modified with gold(Au)have been synthesized by a thermal decomposition method.The obtained NPs and formation of CoFe2O4@Au core–shell(CS)were confirmed by characterizing their structural and optical properties using X-ray powder diffraction(XRD)patterns,Fourier transform infrared spectroscopy,Raman spectroscopy,UV–Visible and photoluminescence studies.Morphological and compositional studies were carried out using high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy,while the magnetic properties were determined using alternating gradient magnetometer and Mossbauer to define the magneto-structural effects of shell formation on the core NPs.Induction heating properties of CoFe2O4 and CoFe2O4@Au CS magnetic nanoparticles(MNPs)have been investigated and correlated with magneto-structural properties.Specific absorption rate and intrinsic loss power were calculated for these MNPs within the human tolerable range of frequency and amplitude,suggesting their potential in magnetic fluid hyperthermia therapy for possible cancer treatment.展开更多
The present study investigated the influence of substrate temperature(Ts)and working pressure(P(Ar))on tailoring the properties of nanocrystalline(nc)molybdenum(Mo)films fabricated by radio-frequency magnetron sputter...The present study investigated the influence of substrate temperature(Ts)and working pressure(P(Ar))on tailoring the properties of nanocrystalline(nc)molybdenum(Mo)films fabricated by radio-frequency magnetron sputtering.The structural,morphological,electrical and optical properties of nc-Mo films were evaluated in detail.The Mo films exhibited(110)orientation with average crystallite size varying from 9 to 22(±1)nm on increasing Ts.Corroborating with structural data,the electrical resistivity decreased from 55μΩcm to 10μΩcm,which is the lowest among all the Mo films.For Mo films deposited under variable P(Ar).the(110)peak intensity decrement coupled with peak broadening on increasing P(Ar).Lower deposition pressure yielded densely packed thin films with superior structural properties along with low resistivity of 15μΩcm.Optimum conditions to produce high quality Mo films with excellent structural,morphological,electrical and optical characteristics for utilization in solar cells as back contact layers were identified.展开更多
Interactive machine learning(ML)systems are difficult to design because of the‘‘Two Black Boxes’’problem that exists at the interface between human and machine.Many algorithms that are used in interactive ML syste...Interactive machine learning(ML)systems are difficult to design because of the‘‘Two Black Boxes’’problem that exists at the interface between human and machine.Many algorithms that are used in interactive ML systems are black boxes that are presented to users,while the human cognition represents a second black box that can be difficult for the algorithm to interpret.These black boxes create cognitive gaps between the user and the interactive ML model.In this paper,we identify several cognitive gaps that exist in a previously-developed interactive visual analytics(VA)system,Andromeda,but are also representative of common problems in other VA systems.Our goal with this work is to open both black boxes and bridge these cognitive gaps by making usability improvements to the original Andromeda system.These include designing new visual features to help people better understand how Andromeda processes and interacts with data,as well as improving the underlying algorithm so that the system can better implement the intent of the user during the data exploration process.We evaluate our designs through both qualitative and quantitative analysis,and the results confirm that the improved Andromeda system outperforms the original version in a series of high-dimensional data analysis tasks.展开更多
This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO_(2)total column(XCO_(2))using spatio-temporal geostatistics,which makes full use of the joint spatial an...This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO_(2)total column(XCO_(2))using spatio-temporal geostatistics,which makes full use of the joint spatial and temporal dependencies between observations.The mapping approach considers the latitude-zonal seasonal cycles and spatio-temporal correlation structure of XCO_(2),and obtains global land maps of XCO_(2),with a spatial grid resolution of 1°latitude by 1°longitude and temporal resolution of 3 days.We evaluate the accuracy and uncertainty of the mapping dataset in the following three ways:(1)in cross-validation,the mapping approach results in a high correlation coefficient of 0.94 between the predictions and observations,(2)in comparison with ground truth provided by the Total Carbon Column Observing Network(TCCON),the predicted XCO_(2)time series and those from TCCON sites are in good agreement,with an overall bias of 0.01 ppm and a standard deviation of the difference of 1.22 ppm and(3)in comparison with model simulations,the spatio-temporal variability of XCO_(2)between the mapping dataset and simulations from the CT2013 and GEOS-Chem are generally consistent.The generated mapping XCO_(2)data in this study provides a new global geospatial dataset in global understanding of greenhouse gases dynamics and global warming.展开更多
基金the U.S.Department of Energy(DOE)Office of Electricity under contract No.57558PNNL is an operated by Battelle Memorial Institute for the DOE under contract DE-AC05-76RL01830.
文摘In the majority of rechargeable batteries including lithium-ion batteries,polyvinylidene fluoride(PVdF)binders are the most commonly used binder for both anode and cathode.However,using PVdF binder requires the organic solvent of N-methyl-2-pyrrolidone which is expensive,volatile,combustible,toxic,and has poor recyclability.Therefore,switching to aqueous electrode processing routes with non-toxic binders would provide a great leap forward towards the realization of ideally fully sustainable and environmentally friendly electrochemical energy storage devices.Various water-soluble binders(aqueous binders)were characterized and compared to the performance of conventional PVdF.Our study demonstrates that the electrochemical performance of Zn/MnO_(2) aqueous batteries is significantly improved by using sodium carboxymethyl cellulose(CMC)binder.In addition,CMC binders offer desirable adhesion,good wettability,homogeneous material distribution,and strong chemical stability at certain pH levels(3.5-5)without any decomposition for long-cycle life.
文摘As mentioned by National Geographic(2017),70%of world’s population is expected to live in large apartment buildings by 2050.Today,buildings in cities generate 30%of world’s greenhouse gas emission or GHG(National Geographic,2017).Major urban centers are committed to reducing greenhouse gases by 80%by 2050(IEA,2021).However,achieving such goals in rental properties is not easy.Landlords are hesitant to use high-efficiency technologies because,typically,tenants pay the utilities bill.However,that situation is rapidly changing.For example,New York City like other US cities,is considering a carbon cap on all large buildings(Local Law 97,2019).That means landlords will pay a carbon penalty if the building’s carbon footprint exceeds certain threshold no matter who uses that carbon.The Pacific Northwest National Laboratory(PNNL)has received funds from DOE(US Department of Energy)with the collaboration of a commercial partner to address emerging energy efficiency market opportunity in multi-family or rental housing as discussed above.It has partnered with a large national real estate owner in order to test a novel energy optimization method at a rental property in Tempe,Arizona.By using a seamless-integrated method of acquiring building’s operating data,the optimization approach essentially resets setpoints of different energy consuming equipment such as chillers,boilers,pumps,and fans.Data-driven optimization approach is pragmatic and easily transferrable to other buildings.The authors shall share the problem background,technical approach,and preliminary results.
基金Author (Sandip Sabale) is thankful to University Grants Commission, New Delhi, India, for Raman Fellowship to work in USA (F. No. 5-105/2016 (IC), February 10, 2016
文摘CoFe2O4 nanoparticles(NPs)and surface modified with gold(Au)have been synthesized by a thermal decomposition method.The obtained NPs and formation of CoFe2O4@Au core–shell(CS)were confirmed by characterizing their structural and optical properties using X-ray powder diffraction(XRD)patterns,Fourier transform infrared spectroscopy,Raman spectroscopy,UV–Visible and photoluminescence studies.Morphological and compositional studies were carried out using high-resolution transmission electron microscopy and energy-dispersive X-ray spectroscopy,while the magnetic properties were determined using alternating gradient magnetometer and Mossbauer to define the magneto-structural effects of shell formation on the core NPs.Induction heating properties of CoFe2O4 and CoFe2O4@Au CS magnetic nanoparticles(MNPs)have been investigated and correlated with magneto-structural properties.Specific absorption rate and intrinsic loss power were calculated for these MNPs within the human tolerable range of frequency and amplitude,suggesting their potential in magnetic fluid hyperthermia therapy for possible cancer treatment.
基金supported financially by the National Science Foundation (NSF) with the NSF-PREM grant#DMR-1827745
文摘The present study investigated the influence of substrate temperature(Ts)and working pressure(P(Ar))on tailoring the properties of nanocrystalline(nc)molybdenum(Mo)films fabricated by radio-frequency magnetron sputtering.The structural,morphological,electrical and optical properties of nc-Mo films were evaluated in detail.The Mo films exhibited(110)orientation with average crystallite size varying from 9 to 22(±1)nm on increasing Ts.Corroborating with structural data,the electrical resistivity decreased from 55μΩcm to 10μΩcm,which is the lowest among all the Mo films.For Mo films deposited under variable P(Ar).the(110)peak intensity decrement coupled with peak broadening on increasing P(Ar).Lower deposition pressure yielded densely packed thin films with superior structural properties along with low resistivity of 15μΩcm.Optimum conditions to produce high quality Mo films with excellent structural,morphological,electrical and optical characteristics for utilization in solar cells as back contact layers were identified.
基金This work was supported in part by NSF grant CSSI-2003387 and NSF I/UCRC CNS-1822080 via the NSF Center for Space,Highperformance,and Resilient Computing(SHREC).
文摘Interactive machine learning(ML)systems are difficult to design because of the‘‘Two Black Boxes’’problem that exists at the interface between human and machine.Many algorithms that are used in interactive ML systems are black boxes that are presented to users,while the human cognition represents a second black box that can be difficult for the algorithm to interpret.These black boxes create cognitive gaps between the user and the interactive ML model.In this paper,we identify several cognitive gaps that exist in a previously-developed interactive visual analytics(VA)system,Andromeda,but are also representative of common problems in other VA systems.Our goal with this work is to open both black boxes and bridge these cognitive gaps by making usability improvements to the original Andromeda system.These include designing new visual features to help people better understand how Andromeda processes and interacts with data,as well as improving the underlying algorithm so that the system can better implement the intent of the user during the data exploration process.We evaluate our designs through both qualitative and quantitative analysis,and the results confirm that the improved Andromeda system outperforms the original version in a series of high-dimensional data analysis tasks.
基金Work at the Chinese University of Hong Kong(CUHK)was supported by the Open Research Fund of Key Laboratory of Digital Earth Science,Institute of Remote Sensing and Digital Earth,Chinese Academy of Sciences(CAS-RADI,No.2014LDE010)National Key Basic Research Program of China(2015CB954103)+2 种基金Work at the RADI-CAS was funded by the Strategic Priority Research Program-Climate Change:Carbon Budget and Relevant Issues of the Chinese Academy of Sciences(No.XDA05040401)Work at University of Toronto is supported by the global scholarship program for research excellent from CUHK to Z.-C.ZengThe TCCON Network is supported by NASA’s Carbon Cycle Science Program through a grant to the California Institute of Technology.TCCON data were obtained from the TCCON Data Archive,operated by the California Institute of Technology from the website at http://tccon.ipac.caltech.edu/.Measurement programs at Darwin and Wollongong are supported by the Australian Research Council under grants DP140101552,DP110103118,DP0879468352,LP0562346.A part of work for Saga site at JAXA was supported by the Environment Research and Technology Development Fund(A-1102)of the Ministry of the Environment,Japan.Four Corners TCCON site was funded by LANL’s LDRD Project(20110081DR).
文摘This study presents an approach for generating a global land mapping dataset of the satellite measurements of CO_(2)total column(XCO_(2))using spatio-temporal geostatistics,which makes full use of the joint spatial and temporal dependencies between observations.The mapping approach considers the latitude-zonal seasonal cycles and spatio-temporal correlation structure of XCO_(2),and obtains global land maps of XCO_(2),with a spatial grid resolution of 1°latitude by 1°longitude and temporal resolution of 3 days.We evaluate the accuracy and uncertainty of the mapping dataset in the following three ways:(1)in cross-validation,the mapping approach results in a high correlation coefficient of 0.94 between the predictions and observations,(2)in comparison with ground truth provided by the Total Carbon Column Observing Network(TCCON),the predicted XCO_(2)time series and those from TCCON sites are in good agreement,with an overall bias of 0.01 ppm and a standard deviation of the difference of 1.22 ppm and(3)in comparison with model simulations,the spatio-temporal variability of XCO_(2)between the mapping dataset and simulations from the CT2013 and GEOS-Chem are generally consistent.The generated mapping XCO_(2)data in this study provides a new global geospatial dataset in global understanding of greenhouse gases dynamics and global warming.