期刊文献+
共找到15篇文章
< 1 >
每页显示 20 50 100
A New Species of the Genus Liurana(Anura:Ceratobatrachidae)from Medog,China
1
作者 Haoqi YU Yiheng LIN +6 位作者 Yuxi WANG Puyang ZHENG Shengchao SHI Bin WANG Jianping JIANG Zhaobin SONG Feng XIE 《Asian Herpetological Research》 SCIE CSCD 2024年第3期131-139,共9页
A new species of the genus Liurana is described from Medog,Xizang,China,based on morphological and molecular data.Molecular phylogenetic analysis based on the mitochondrial gene COI indicated that this new species rep... A new species of the genus Liurana is described from Medog,Xizang,China,based on morphological and molecular data.Molecular phylogenetic analysis based on the mitochondrial gene COI indicated that this new species represented an independent evolutionary lineage.In addition,the uncorrected genetic distance between the new species and its closest congener species,L.alpina,was 9.6%-9.8%for COI.The new species,Liurana namchabarwa sp.nov.Yu,Lin,Wang,Jiang and Xie,could be distinguished from its congeners by following characters:(1)relatively large body size in this genus,SVL=21.2-23.1 mm in adult males(n=3);(2)relatively narrow head(HL/HW=100.5%-104.8%(n=3));(3)digital disc not expanded;(4)relatively long hindlimbs,with tibiotarsal articulation reaching tip of snout when adpressed. 展开更多
关键词 Liurana namchabarwa sp.nov. molecular phylogenetic analyses MORPHOLOGY TAXONOMY
下载PDF
Study on engineering-hydrogeological problems of hydroelectric project
2
作者 XU Mo ZHANG Qiang +4 位作者 KANG Xiao-bing ZHANG Shi-shu QI Ji-hong YANG Yan-na GUO Jian 《Journal of Groundwater Science and Engineering》 2016年第4期310-319,共10页
Engineering-hydrogeological problems arise from the interaction between engineering activities and geological environment, in which rock-soil mass and groundwater are especially important constituents. However, up-to-... Engineering-hydrogeological problems arise from the interaction between engineering activities and geological environment, in which rock-soil mass and groundwater are especially important constituents. However, up-to-date research on them is relatively dispersive and simple due to their complexity and lack of comprehensive and systematic study methods. Starting from geological analysis of mechanism to geological model based on geological regularities, the paper predicts the tendency of geological evolvement and puts forward proper measures to solve problems. In this paper, elevated water-sensitive structure in rock-soil mass, which mainly causes engineering hydrogeological problems, and problems in hydropower is discussed based on unique construction in Chinese Western hydropower projects. Engineering hydrogeological problems are reservoir induced earthquakes leakage from reservoir bottom in karst, stability of high slope at reservoir banks, sliding of dam foundation and dam abutment, and confined water at key positions which are introduced and determined by using water-sensitive factors(or structure) according to special hydrogeological conditions. 展开更多
关键词 Engineering-hydrogeological problems Geological analysis of mechanism Geological model Rock mass seepage Hydroelectric project
下载PDF
Deformation and failure mechanism of Yanjiao rock slope influenced by rainfall and water level fluctuation of the Xiluodu hydropower station reservoir 被引量:3
3
作者 Wang Neng-feng He Jian-xian +2 位作者 DU Xiao-xiang Cai Bin Zhao Jian-jun 《Journal of Mountain Science》 SCIE CSCD 2023年第1期1-14,共14页
With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slop... With the construction of the Xiluodu hydropower station on the Jinsha River,the reservoir impoundment began in 2013 and the water level fluctuates annually between 540 m and 600 m above sea level.The Yanjiao rock slope which is located on the left bank of the Jinsha River 75 km upstream of the Xiluodu dam site,began to deform in 2014.The potential failure of the slope not only threatens Yanjiao town but also affects the safe operation of the Xiluodu reservoir.This paper is to find the factors influencing the Yanjiao slope deformation through field investigation,geotechnical reconnaissance,and monitoring.Results show that the Yanjiao slope can be divided into a bank collapse area(BCA)and a strong deformation area(SDA)based on the crack distribution characteristics of the slope.The rear area of the slope has been experiencing persistent deformation with a maximum cumulative displacement(GPS monitoring point G4)of 505 mm and 399 mm in the horizontal and vertical directions,respectively.The potential failure surface of the slope is formed 36 m below the surface based on the borehole inclinometer.The bank collapses of the Yanjiao slope are directly caused by the reservoir impoundment while the deformation area of the slope is affected by the combination of the rainfall and reservoir water level fluctuation.Based on mechanism of the Yanjiao slope,prestressed anchor combined with the surface drainage and slope unloading are recommended to prevent potential deformation. 展开更多
关键词 Reservoir rock slope RAINFALL Reservoir water level fluctuation Deformation characteristics Slope failure mechanism
下载PDF
Analysis of rockburst mechanism and warning based on microseismic moment tensors and dynamic Bayesian networks 被引量:3
4
作者 Haoyu Mao Nuwen Xu +4 位作者 Xiang Li Biao Li Peiwei Xiao Yonghong Li Peng Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第10期2521-2538,共18页
One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the ev... One of the major factors inhibiting the construction of deep underground projects is the risk posed by rockbursts.A study was conducted on the access tunnel of the Shuangjiangkou hydropower station to determine the evolutionary mechanism of microfractures within the surrounding rock mass during rockburst development and develop a rockburst warning model.The study area was chosen through the combination of field studies with an analysis of the spatial and temporal distribution of microseismic(MS)events.The moment tensor inversion method was adopted to study rockburst mechanism,and a dynamic Bayesian network(DBN)was applied to investigating the sensitivity of MS source parameters for rockburst warnings.A MS multivariable rockburst warning model was proposed and validated using two case studies.The results indicate that fractures in the surrounding rock mass during the development of strain-structure rockbursts initially show shear failure and are then followed by tensile failure.The effectiveness of the DBN-based rockburst warning model was demonstrated using self-validation and K-fold cross-validation.Moment magnitude and source radius are the most sensitive factors based on an investigation of the influence on the parent and child nodes in the model,which can serve as important standards for rockburst warnings.The proposed rockburst warning model was found to be effective when applied to two actual projects. 展开更多
关键词 Microseismic monitoring Moment tensor Dynamic Bayesian network(DBN) Rockburst warning Shuangjiangkou hydropower station
下载PDF
Mechanism of subsidence-buckling and instability of slopes in thick-layered rigid rock under mining 被引量:2
5
作者 DENG Jie ZHAO Jian-jun +4 位作者 LAI Qi-yi LI Ai-nong XIE Ming-li LI Qing-miao ZHAO Xiao 《Journal of Mountain Science》 SCIE CSCD 2023年第8期2370-2387,共18页
The deformation and failure of mining slopes in layered rocks predominantly result from shear landslides.However,the instability process of the Pusa rock avalanche in Guizhou,China,revealed a unique damage phenomenon:... The deformation and failure of mining slopes in layered rocks predominantly result from shear landslides.However,the instability process of the Pusa rock avalanche in Guizhou,China,revealed a unique damage phenomenon:prominent breaking and toppling of rock blocks occurred in the central section of the mountain,with a lack of commonly observed shear landslide features.This paper aims to investigate the underlying reasons behind this distinctive damage pattern.The study employs various methods including geological survey,UAV aerial survey,physical simulation,and discrete element numerical simulation.The findings indicate that the geological conditions,characterized by a hard upper layer and a soft lower layer along with underground mining activities,play a significant role in triggering the landslide.Furthermore,the presence of a columnar structured rock mass emerges as the primary factor influencing the instability of the Pusa rock avalanche.To elucidate the mining failure mechanism of the rock mass with vertical joints,we propose a"subsidence-buckling"failure model.Following the subsidence and collapse of the roof rock mass in the goaf,the columnar rock mass in the upper and middle portions of the slope undergoes deflection and deformation,forming a three-hinged arch structure.This structural configuration converts the pressure exerted by the overlying rock mass into both vertical pressure and lateral thrust.Under the influence of external loads,the slope experiences buckling failure,ultimately leading to instability upon fragmentation.By shedding light on these findings,this study contributes to a better understanding of the spatiotemporal evolution of mining slope fractures and their impact on slope stability. 展开更多
关键词 Mining landslide Failure mechanism Block structure Failure characteristics Soft-hard interbedding
下载PDF
Key Technologies in the Design and Construction of 300 m Ultra-High Arch Dams 被引量:13
6
作者 RenkunWang 《Engineering》 SCIE EI 2016年第3期350-359,共10页
Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the ]inping 1 (305 m), Xiaowan (294... Starting with the Ertan arch dam (240 m high, 3300 MW) in 2000, China successfully built a total of seven ultra-high arch dams over 200 m tall by the end of 2014. Among these, the ]inping 1 (305 m), Xiaowan (294.5m), and Xiluodu (285.5 m) arch dams have reached the 300 m height level (i.e., near or over 300 m), making them the tallest arch dams in the world. The design and construction of these 300 m ultra-high arch dams posed significant challenges, due to high water pressures, high seismic de- sign criteria, and complex geological conditions. The engineering team successfully tackled these chal- lenges and made critical breakthroughs, especially in the area of safety control. In this paper, the author summarizes various key technological aspects involved in the design and construction of 300 m ultra- high arch dams, including the strength and stability of foundation rock, excavation of the dam base and surface treatment, dam shape optimization, safety design guidelines, seismic analysis and design, treatment of a complex foundation, concrete temperature control, and crack prevention. The experience gained from these projects should be valuable for future practitioners. 展开更多
关键词 Ultra-high arch dam Shape optimization Arch dam overall safety Seismic safety Concrete temperature contro
下载PDF
Estimation of the three-dimensional in situ stress field around a large deep underground cavern group near a valley 被引量:9
7
作者 Dingping Xu Xiang Huang +7 位作者 Quan Jiang Shaojun Li Hong Zheng Shili Qiu Huaisheng Xu Yonghong Li Zhiguo Li Xingdong Ma 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2021年第3期529-544,共16页
Understanding three-dimensional(3D)in situ stress field is of key importance for estimating the stability of large deep underground cavern groups near valleys.However,the complete 3D in situ stress fields around large... Understanding three-dimensional(3D)in situ stress field is of key importance for estimating the stability of large deep underground cavern groups near valleys.However,the complete 3D in situ stress fields around large deep underground cavern groups are difficult to determine based on in situ stress data from a limited number of measuring points due to the insufficient representativeness and unreliability of such measurements.In this study,an integrated approach for estimating the 3D in situ stress field around a large deep underground cavern group near a valley is developed based on incomplete in situ stress measurements and the stress-induced failures of tunnels excavated prior to the step excavation of the cavern group.This integrated approach is implemented via four interrelated and progressive basic steps,i.e.inference of the regional tectonic stress field direction,analyses of in situ stress characteristics and measurement reliability,regression-based in situ stress field analysis and reliability assessment,and modified in situ stress field analysis and reliability verification.The orientations and magnitudes of the 3D in situ stress field can be analyzed and obtained at a strategic level following these four basic steps.First,the tectonic stress field direction around the cavern group is deduced in accordance with the regional tectonic framework and verified using a regional crustal deformation velocity map.Second,the reliability of the in situ stress measurements is verified based on the locations and depths of stressinduced brittle failures in small tunnels(such as exploratory tunnels and pilot tunnels)within the excavation range of the cavern group.Third,considering the influences of the valley topography and major geological structures,the 3D in situ stress field is regressed using numerical simulation and multiple linear regression techniques based on the in situ stress measurements.Finally,the regressed in situ stress field is further modified and reverified based on the stress-induced brittle failures of small tunnels and the initial excavation of the cavern group.A case study of the Shuangjiangkou underground cavern group demonstrates that the proposed approach is reliable for estimating the 3D in situ stress fields of large deep underground cavern groups near valleys,thus contributing to the optimization of practical excavation and design of mitigating the instability of the surrounding rock masses during step excavations. 展开更多
关键词 Underground cavern group In situ stress Stress-induced brittle failure Spalling depth Numerical simulation
下载PDF
Seismic design of Xiluodu ultra-high arch dam 被引量:4
8
作者 Ren-kun Wang Lin Chen Chong Zhang 《Water Science and Engineering》 EI CAS CSCD 2018年第4期288-301,共14页
The 285.5 m-high Xiluodu Arch Dam is located in a seismic region along the Jinsha River in China, where the horizontal components of peak ground accelerations for design and checking earthquakes have been estimated to... The 285.5 m-high Xiluodu Arch Dam is located in a seismic region along the Jinsha River in China, where the horizontal components of peak ground accelerations for design and checking earthquakes have been estimated to be 0.355 g and 0.423 g, respectively( g is the gravitational acceleration). The ground motion parameters of design and checking earthquakes are defined by exceedance probabilities of 2% over 100 years and 1% over 100 years, respectively. The dam shape was first selected and optimized through static analysis of the basic load combinations, and then adjusted after taking into account the seismic loads. The dam should be operational during and after the design earthquake with or without minor repairs, and maintain local and global stabilities during an extreme earthquake. Both linear elastic dynamic analysis and nonlinear dynamic analysis considering radiation damping, contraction joints, and material nonlinearity were conducted to assess the stress in the arch dam.The dynamic analysis shows that the maximum dynamic compressive stresses are less than the allowable levels, while the area with tensile stress over the limit is less than 15% of the dam surface and the maximum contraction openings range from 10 mm to 25 mm. The arch dam has sufficient earthquake-resistance capacity and meets the safety requirements. Nevertheless, steel reinforcement has been provided at the dam toe and in the zones of high tensile stress on the dam surface out of extra precaution. 展开更多
关键词 Seismic design Nonlinear dynamic analysis Dam shape optimization Seismic strengthening Xiluodu arch dam
下载PDF
Measures for controlling large deformations of underground caverns under high in-situ stress condition--A case study of JinpingⅠhydropower station 被引量:10
9
作者 Shengwu Song Xuemin Feng +3 位作者 Chenggang Liao Dewen Cai Zhongxu Liu Yunhao Yang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2016年第5期605-618,共14页
The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the ... The Jinping I hydropower station is a huge water conservancy project consisting of the highest concrete arch dam to date in the world and a highly complex and large underground powerhouse cavern. It is located on the right bank with extremely high in-situ stress and a few discontinuities observed in surrounding rock masses. The problems of rock mass deformation and failure result in considerable challenges related to project design and construction and have raised a wide range of concerns in the fields of rock mechanics and engineering. During the excavation of underground caverns, high in-situ stress and relatively low rock mass strength in combination with large excavation dimensions lead to large deformation of the surrounding rock mass and support. Existing experiences in excavation and support cannot deal with the large deformation of rock mass effectively, and further studies are needed. In this paper, the geological conditions, layout of caverns, and design of excavation and support are first introduced, and then detailed analyses of deformation and failure characteristics of rocks are presented. Based on this, the mechanisms of deformation and failure are discussed, and the support adjustments for controlling rock large deformation and subsequent excavation procedures are proposed. Finally, the effectiveness of support and excavation adjustments to maintain the stability of the rock mass is verified. The measures for controlling the large deformation of surrounding rocks enrich the practical experiences related to the design and construction of large underground openings, and the construction of caverns in the Jinping I hydropower station provides a good case study of large-scale excavation in highly stressed ground with complex geological structures, as well as a reference case for research on rock mechanics. 展开更多
关键词 Large-scale underground caverns High in-situ stress Large deformationDeformation controlling technologies Jinping I hydropower station
下载PDF
Horizontal dynamic response of a large-diameter pipe pile considering the second-order effect of axial force 被引量:2
10
作者 Luan Lubao Ding Xuanming +2 位作者 Zhou Wei Zheng Changjie Qu Liming 《Earthquake Engineering and Engineering Vibration》 SCIE EI CSCD 2018年第3期567-579,共13页
The second-order effect of axial force on horizontal vibrating characteristics of a large-diameter pipe pile is theoretically investigated.Governing equations of the pile-soil system are established based on elastodyn... The second-order effect of axial force on horizontal vibrating characteristics of a large-diameter pipe pile is theoretically investigated.Governing equations of the pile-soil system are established based on elastodynamics.Threedimensional wave equations of soil are decoupled through differential transformation and variable separation.Consequently,expressions of soil displacements and horizontal resistances can be obtained.An analytical solution of the pile is derived based on continuity conditions between the pile and soil,subsequently from which expressions of the complex impedances are deduced.Analyses are carried out to examine the second-order effect of axial force on the horizontal vibrating behavior of the pipe pile.Some conclusions can be summarized as follows: stiffness and damping factors are decreased with the application of axial force on the pile head; distributions of the pile horizontal displacement and rotation angle are regenerated due to the second-order effect of the applied axial force; and redistributions of the bending moment and shearing force occur due to the second-order effect of the applied axial force. 展开更多
关键词 axial force second-order effect horizontal vibration pipe pile analytical solution
下载PDF
Application of isotopic information for estimating parameters in Philip infiltration model 被引量:1
11
作者 Tao Wang Hai-li Xu Wei-min Bao 《Water Science and Engineering》 EI CAS CSCD 2016年第4期287-292,共6页
Minimizing parameter uncertainty is crucial in the application of hydrologic models.Isotopic information in various hydrologic components of the water cycle can expand our knowledge of the dynamics of water flow in th... Minimizing parameter uncertainty is crucial in the application of hydrologic models.Isotopic information in various hydrologic components of the water cycle can expand our knowledge of the dynamics of water flow in the system,provide additional information for parameter estimation,and improve parameter identifiability.This study combined the Philip infiltration model with an isotopic mixing model using an isotopic mass balance approach for estimating parameters in the Philip infiltration model.Two approaches to parameter estimation were compared:(a) using isotopic information to determine the soil water transmission and then hydrologic information to estimate the soil sorptivity,and(b) using hydrologic information to determine the soil water transmission and the soil sorptivity.Results of parameter estimation were verified through a rainfall infiltration experiment in a laboratory under rainfall with constant isotopic compositions and uniform initial soil water content conditions.Experimental results showed that approach(a),using isotopic and hydrologic information,estimated the soil water transmission in the Philip infiltration model in a manner that matched measured values well.The results of parameter estimation of approach(a) were better than those of approach(b).It was also found that the analytical precision of hydrogen and oxygen stable isotopes had a significant effect on parameter estimation using isotopic information. 展开更多
关键词 ISOTOPIC INFORMATION Hydrologic INFORMATION PARAMETER estimation Philip INFILTRATION model RAINFALL INFILTRATION experiment
下载PDF
Preliminary study on the exploitation plan of the mega hydropower base in the lower reaches of Congo River 被引量:1
12
作者 Chuanyu Deng Fulong Song Zhengxi Chen 《Global Energy Interconnection》 2020年第1期13-23,共11页
There have been few studies on the hydropower exploitation plan for sections beyond the Inga hydropower project(HPP)in the lower reaches of the Congo River.Based on topographic and hydrological data of the basin,the e... There have been few studies on the hydropower exploitation plan for sections beyond the Inga hydropower project(HPP)in the lower reaches of the Congo River.Based on topographic and hydrological data of the basin,the exploitation plan for the lower reaches of the Congo River is herein studied.The preliminary proposal involves exploitation using three-cascade hydropower stations.The Grand Inga HPP is the core of the mega hydropower base.The full supply level(FSL)of the reservoir,installed capacity,and regulation performance of the Grand Inga HPP are studied in detail.The main advantages and disadvantages of the high and low dam schemes of the Grand Inga Hydropower Project are compared,in addition to their effects on the overall development of the hydropower base.Moreover,the installed capacity is optimized based on the load characteristics.Based on simulation of cascade hydropower operation and comprehensive analysis,the project scale and implementation sequence is proposed.The influence of hydropower on socio-economic development,energy supply,and emission reduction is analyzed.Finally,the optimal exploitation scheme of the mega hydropower base for the lower reaches of the Congo River is proposed. 展开更多
关键词 CONGO RIVER Cascade HYDROPOWER EXPLOITATION PLAN Grand Inga HYDROPOWER project MEGA HYDROPOWER base Scheme optimization
下载PDF
Air bubble breakup in shear water flows generated by a plug conduit:An experimental investigation
13
作者 Han Wu Mao-lin Zhou +2 位作者 Wei-lin Xu Wang-ru Wei Jian-bo Li 《Journal of Hydrodynamics》 SCIE EI CSCD 2023年第6期1077-1088,共12页
In the context of a sudden contraction plug conduit,the near-wall area experiences a significant shearing effect of water flow,however,the extent to which this shearing effect occurs in bubble-water flow and the relat... In the context of a sudden contraction plug conduit,the near-wall area experiences a significant shearing effect of water flow,however,the extent to which this shearing effect occurs in bubble-water flow and the related variation mechanisms of air bubble size and number remain unclear.This study employs a model test method to investigate the diffusion process of bubble-water flow in a sudden contraction plug conduit.The size and number of bubbles,as well as their distribution along the shearing section under varying initial air volume conditions,are studied in detail using a high-speed image acquisition system.The experimental findings reveal a self-similar relationship between the number and size of bubbles and their cross-sectional distribution over time.The bubble number and size vary in three stages,i.e.,quasi-suspension,shearing,and shearing completion stages.The direction perpendicular to the conduit exhibits peak values in bubble number distribution over the three stages,with peak value location varying with the near-wall area.As time progresses,the peak value increases,and a larger initial air volume corresponds to a smaller distance of the peak value location from the wall.The size of air bubbles near the wall is consistent with the minimum diameter of air bubbles in shear flow and is hardly affected by the initial air volume.These results aid in comprehending the change law of two-phase water and air flow under a strong shearing effect in the plug conduit,and provide useful insights for hydraulic design in fluid engineering. 展开更多
关键词 Air-water flows bubble properties air diffusion process plug conduits experimental study
原文传递
Reservoir Regulation for Control of an Ancient Landslide Reactivated by Water Level Fluctuations in Heishui River,China 被引量:4
14
作者 Jian Guo Mo Xu +3 位作者 Qiang Zhang Xianxuan Xiao Shishu Zhang Shaoming He 《Journal of Earth Science》 SCIE CAS CSCD 2020年第6期1058-1067,共10页
Due to the complex geological processes of Qinghai-Tibet Plateau,numerous deposits,especially the large-scale ancient landslide deposits,are characteristic features of the valleys incised in southwestern China.Intense... Due to the complex geological processes of Qinghai-Tibet Plateau,numerous deposits,especially the large-scale ancient landslide deposits,are characteristic features of the valleys incised in southwestern China.Intense water level fluctuations since 2011 in Maoergai Reservoir,China,registered the reactivation of Xierguazi ancient landslide,and presented a significant risk to neighboring facilities.Based on detailed field survey and drilling exploration,the landslide was divided into Zone A and Zone B,and other characterizations of landslide were studied as well.To precisely measure the extent of landslide displacement during filling and drawdown stage,surface displacement monitoring system was deployed on the landslide.The monitoring analyses data reveal that reservoir fluctuation is the dominant factor influencing landslide displacement,especially during drawdown stage.Moreover,a future sliding is anticipated in Zone A,while a creep had already existed in Zone B.A reservoir regulation was then established using the lead-lag correlation between reservoir fluctuation and landslide displacement and landslide stability analysis.In the end,the follow-up deformation monitoring demonstrates that the reservoir regulation controlled the landslide effectively.Landslide control by reservoir regulation in Maoergai can serve as a case study for other settlements involved in similar construction activities. 展开更多
关键词 ancient landslide REACTIVATION reservoir regulation displacement monitoring correlation analysis
原文传递
Quantification of human and climate contributions to multi-dimensional hydrological alterations:A case study in the Upper Minjiang River,China 被引量:1
15
作者 ZHANG Yuhang YE Aizhong +1 位作者 YOU Jinjun JING Xiangyang 《Journal of Geographical Sciences》 SCIE CSCD 2021年第8期1102-1122,共21页
Dual factors of climate and human on the hydrological process are reflected not only in changes in the spatiotemporal distribution of water resource amounts but also in the various characteristics of river flow regime... Dual factors of climate and human on the hydrological process are reflected not only in changes in the spatiotemporal distribution of water resource amounts but also in the various characteristics of river flow regimes. Isolating and quantifying their contributions to these hydrological alterations helps us to comprehensively understand the response mechanism and patterns of hydrological process to the two kinds of factors. Here we develop a general framework using hydrological model and 33 indicators to describe hydrological process and quantify the impact from climate and human. And we select the Upper Minjiang River(UMR) as a case to explore its feasibility. The results indicate that our approach successfully recognizes the characteristics of river flow regimes in different scenarios and quantitatively separates the climate and human contributions to multi-dimensional hydrological alterations. Among these indicators, 26 of 33 indicators decrease over the past half-century(1961–2012) in the UMR, with change rates ranging from 1.3% to 33.2%, and the human impacts are the dominant factor affecting hydrological processes, with an average relative contribution rate of 58.6%. Climate change causes an increase in most indicators, with an average relative contribution rate of 41.4%. Specifically, changes in precipitation and reservoir operation may play a considerable role in inducing these alterations. The findings in this study help us better understand the response mechanism of hydrological process under changing environment and is conducive to climate change adaptation, water resource planning and ecological construction. 展开更多
关键词 hydrological alterations Minjiang River Basin quantitative assessment climate change direct human impacts
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部