期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
COVID19 Classification Using CT Images via Ensembles of Deep Learning Models 被引量:1
1
作者 Abdul Majid Muhammad Attique Khan +4 位作者 Yunyoung Nam Usman Tariq Sudipta Roy Reham R.Mostafa Rasha H.Sakr 《Computers, Materials & Continua》 SCIE EI 2021年第10期319-337,共19页
The recent COVID-19 pandemic caused by the novel coronavirus,severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),has had a significant impact on human life and the economy around the world.A reverse transcript... The recent COVID-19 pandemic caused by the novel coronavirus,severe acute respiratory syndrome coronavirus 2(SARS-CoV-2),has had a significant impact on human life and the economy around the world.A reverse transcription polymerase chain reaction(RT-PCR)test is used to screen for this disease,but its low sensitivity means that it is not sufficient for early detection and treatment.As RT-PCR is a time-consuming procedure,there is interest in the introduction of automated techniques for diagnosis.Deep learning has a key role to play in the field of medical imaging.The most important issue in this area is the choice of key features.Here,we propose a set of deep learning features based on a system for automated classification of computed tomography(CT)images to identify COVID-19.Initially,this method was used to prepare a database of three classes:Pneumonia,COVID19,and Healthy.The dataset consisted of 6000 CT images refined by a hybrid contrast stretching approach.In the next step,two advanced deep learning models(ResNet50 and DarkNet53)were fine-tuned and trained through transfer learning.The features were extracted from the second last feature layer of both models and further optimized using a hybrid optimization approach.For each deep model,the Rao-1 algorithm and the PSO algorithm were combined in the hybrid approach.Later,the selected features were merged using the new minimum parallel distance non-redundant(PMDNR)approach.The final fused vector was finally classified using the extreme machine classifier.The experimental process was carried out on a set of prepared data with an overall accuracy of 95.6%.Comparing the different classification algorithms at the different levels of the features demonstrated the reliability of the proposed framework. 展开更多
关键词 COVID19 PREPROCESSING deep learning information fusion firefly algorithm extreme learning machine
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部