The gut microbiota and its genomic scaffold, exceeding the human one nearly 500 times, substantially affect human health and diseases. Host-microbe interactions, exerted through microbial biochemical and immunological...The gut microbiota and its genomic scaffold, exceeding the human one nearly 500 times, substantially affect human health and diseases. Host-microbe interactions, exerted through microbial biochemical and immunological activities, contain pathogen burden, control neurological and endocrine signalling, enterocyte wellness, energy biosynthesis, gut dysbiosis, complement gaps of host metabolic pathways, finally contributing to human physiology and disease within the gastrointestinal district and through gut-liver and gut-brain axis (1). Regardless substantial advances in correlating microbiota modulation and perturbation with various influencers, the specific impact of internal and external stimuli need to be definitely assigned though causality relationships beyond correlative measures. Host origin or genetic background, age, sanitation, delivery mode, breast-feeding and weaning, infections, diet, drugs, but also exercise, sleep, stress have been reviewed in a wide range of recent literature (2). All external (i.e., food, pathogens) and internal (i.e., microbiota) host modulating factors, both, can be conceptually synthetized by the term "exposome" which we are exposed to in the lifetime and which drives both individual enterophenotypes and disease phenotypes (3). Integrative descriptive and functional charts of microbiota allow the description of the microbiota-host Holobionts system, relationship that can be employed in understanding personalized physiology and nutrition, thus providing patient-tailored therapies (Figure 1). To investigate microbiota unbalance and passage from healthy to disease or unhealthy status, individual baseline compositions and variations within an individual's own range are required.展开更多
文摘The gut microbiota and its genomic scaffold, exceeding the human one nearly 500 times, substantially affect human health and diseases. Host-microbe interactions, exerted through microbial biochemical and immunological activities, contain pathogen burden, control neurological and endocrine signalling, enterocyte wellness, energy biosynthesis, gut dysbiosis, complement gaps of host metabolic pathways, finally contributing to human physiology and disease within the gastrointestinal district and through gut-liver and gut-brain axis (1). Regardless substantial advances in correlating microbiota modulation and perturbation with various influencers, the specific impact of internal and external stimuli need to be definitely assigned though causality relationships beyond correlative measures. Host origin or genetic background, age, sanitation, delivery mode, breast-feeding and weaning, infections, diet, drugs, but also exercise, sleep, stress have been reviewed in a wide range of recent literature (2). All external (i.e., food, pathogens) and internal (i.e., microbiota) host modulating factors, both, can be conceptually synthetized by the term "exposome" which we are exposed to in the lifetime and which drives both individual enterophenotypes and disease phenotypes (3). Integrative descriptive and functional charts of microbiota allow the description of the microbiota-host Holobionts system, relationship that can be employed in understanding personalized physiology and nutrition, thus providing patient-tailored therapies (Figure 1). To investigate microbiota unbalance and passage from healthy to disease or unhealthy status, individual baseline compositions and variations within an individual's own range are required.