In cloud computing, the risk of data leakage exists between users and virtual machines. Whether it is direct or indirect data leakage, it can be regarded as illegal information flow. Methods such as access control mod...In cloud computing, the risk of data leakage exists between users and virtual machines. Whether it is direct or indirect data leakage, it can be regarded as illegal information flow. Methods such as access control models can control the information flow rather than the covert information flow. Therefore, it needs to use the noninterference models to detect the existence of illegal information flow in cloud computing. Typical noninterference models are not suitable to verificate information flow in cloud computing. When concurrent access actions execute in the cloud architecture, security domains do not affect each other, because there is no information flow between security domains. Based on this, we propose noninterference for cloud architecture in which concurrent access and sequential access coexist. When the sequential actions execute, the information flow between security domains can flow in accordance with established rules. When concurrent access actions execute, there should not be the information flow between security domains.展开更多
基金Supported by the National Natural Science Foundation of China(61640220)the Natural Science Research Project of Jiangsu Province Universities and Colleges(17KJD520005)the Government Audit Research Foundation of Nanjing Audit University
文摘In cloud computing, the risk of data leakage exists between users and virtual machines. Whether it is direct or indirect data leakage, it can be regarded as illegal information flow. Methods such as access control models can control the information flow rather than the covert information flow. Therefore, it needs to use the noninterference models to detect the existence of illegal information flow in cloud computing. Typical noninterference models are not suitable to verificate information flow in cloud computing. When concurrent access actions execute in the cloud architecture, security domains do not affect each other, because there is no information flow between security domains. Based on this, we propose noninterference for cloud architecture in which concurrent access and sequential access coexist. When the sequential actions execute, the information flow between security domains can flow in accordance with established rules. When concurrent access actions execute, there should not be the information flow between security domains.