期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Implementation of a Petrographical and Petrophysical Workflow Protocol for Studying the Impact of Heterogeneity on the Rock Typing and Reservoir Quality of Reefal Limestone:A Case Study on the Nullipore Carbonates in the Gulf of Suez
1
作者 Mona G.SAFA Bassem S.NABAWY +2 位作者 Ahmed M.K.BASAL Mohammad A.OMRAN Aref LASHIN 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2021年第5期1746-1762,共17页
This study focuses on the heterogeneity of the middle Miocene syn-rift Belayim nullipore(reefal)marine sequences in the Gulf of Suez and its impacts on reservoir quality.The sequences consist of coralline algal reef l... This study focuses on the heterogeneity of the middle Miocene syn-rift Belayim nullipore(reefal)marine sequences in the Gulf of Suez and its impacts on reservoir quality.The sequences consist of coralline algal reef limestones with a highly complex dual-porosity system of primary and secondary porosities of widely varying percentages.To achieve a precise mathematical modeling of these reservoir sequences,a workflow protocol was applied to separate these sequences into a number of hydraulic flow units(HFUs)and reservoir rock types(RRTs).This has been achieved by conducting a conventional core analysis on the nullipore marine sequence.To illustrate the heterogeneity of the nullipore reservoir,the Dykstra-Parsons coefficient(V)has been estimated(V=0.91),indicating an extremely heterogeneous reservoir.A slight to high anisotropy(λ_(k))has been assigned for the studied nullipore sequences.A stratigraphic modified Lorenz plot(SMLP)was applied to define the optimum number of HFUs and barriers/baffles in each of the studied wells.Integrating the permeability-porosity,reservoir quality index-normalized porosity index(RQI-NPI)and the RQI-flow zone indicator(RQIFZI)plots,the discrete rock types(DRT)and the R35 techniques enable the discrimination of the reservoir sequences into 4 RRTs/HFUs.The RRT4 packstone samples are characterized by the best reservoir properties(moderate permeability anisotropy,with a good-to-fair reservoir quality index),whereas the RRT1 mudstone samples have the lowest flow and storage capacities,as well as the tightest reservoir quality. 展开更多
关键词 reservoir heterogeneity nullipore rock typing hydraulic flow units Dykstra-Parsons coefficient stratigraphic modified Lorenz plot(SMLP)
下载PDF
Unconventional resource's production under desorption-induced effects
2
作者 S.sina hosseini boosari Umut aybar Mohammad O.eshkalak 《Petroleum》 2016年第2期148-155,共8页
Thousands of horizontal wells are drilled into the shale formations across the U.S.and hydrocarbon production is substantially increased during past years.This fact is accredited to advances obtained in hydraulic frac... Thousands of horizontal wells are drilled into the shale formations across the U.S.and hydrocarbon production is substantially increased during past years.This fact is accredited to advances obtained in hydraulic fracturing and pad drilling technologies.The contribution of shale rock surface desorption to production is widely accepted and confirmed by laboratory and field evidences.Nevertheless,the subsequent changes in porosity and permeability due to desorption combined with hydraulic fracture closures caused by increased net effective rock stress state,have not been captured in current shale modeling and simulation.Hence,it is essential to investigate the effects of induced permeability,porosity,and stress by desorption on ultimate hydrocarbon recovery.We have developed a numerical model to study the effect of changes in porosity,permeability and compaction on four major U.S.shale formations considering their Langmuir isotherm desorption behavior.These resources include;Marcellus,New Albany,Barnett and Haynesville Shales.First,we introduced a model that is a physical transport of single-phase gas flow in shale porous rock.Later,the governing equations are implemented into a one-dimensional numerical model and solved using a fully implicit solution method.It is found that the natural gas production is substantially affected by desorption-induced porosity/permeability changes and geomechancis.This paper provides valuable insights into accurate modeling of unconventional reservoirs that is more significant when an even small correction to the future production prediction can enormously contribute to the U.S.economy. 展开更多
关键词 Shale desorption Unconventional reservoirs Porosity change Permeability chang e Desorption-induced effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部