We investigated the aerobic oxidation of ethylbenzene in the absence of solvent or any additive carried out over Ni on different types of supports namely SiO2, hydroxyapatite, SBA-15, and USY Zeolites. The oxidation o...We investigated the aerobic oxidation of ethylbenzene in the absence of solvent or any additive carried out over Ni on different types of supports namely SiO2, hydroxyapatite, SBA-15, and USY Zeolites. The oxidation of ethylbenzene activities was measured in a round bottom flask immersed in oil bath at known reaction temperature. The physicochemical characteristics of the catalysts were examined by BET surface area, XRD, FT-IR and the oxidation activities were correlated with the acidities of the catalysts obtained by TPD of NH3. It was observed that both hydroxyapatite and USY (13% Na2O) supported Ni catalysts displayed higher ethylbenzene conversion and 80% selectivity towards acetophenone.展开更多
Ceria-zirconia(CZ)and ceria-terbia(CT)and alumina-supported ceria-zirconia(CZA)and ceria-terbia(CTA)solid solutions were synthesized by coprecipitation and deposition precipitation methods,respectively.Structural char...Ceria-zirconia(CZ)and ceria-terbia(CT)and alumina-supported ceria-zirconia(CZA)and ceria-terbia(CTA)solid solutions were synthesized by coprecipitation and deposition precipitation methods,respectively.Structural characteristics and catalytic activity of the synthesized samples have been investigated using X-ray diffraction(XRD),high resolution transmission electron microscopy(HRTEM),X-ray photoelectron spectroscopy(XPS),Raman spectroscopy(RS),and Brunauer-Emmett-Teller(BET)surface area measurements.To evaluate the catalytic properties,total oxygen storage capacity and CO oxidation activity measurements were carried out.The XRD analyses revealed the formation of Ce0.75Zr0.25O2 phase for CZ and Ce0.5Zr0.5O2 and Ce0.6Zr0.4O2 phases for CZA samples,respectively.While the formation of only Ce0.8Tb0.2O2-δphase was noted for both CT and CTA samples.All the supported and unsupported samples adopted a fluorite-type structure and exhibited cell parameters with respect to Vegard's rule.The HRTEM results indicated well-dispersed particles of the size around 5 nm.The RS measurements suggested the presence of oxygen vacancies due to defective structure formation.The XPS studies revealed the presence of cerium in both Ce 4+ and Ce 3+ oxidation states in different proportions.It was found that CO oxidation for CTA occurs at very much lower temperature than CT,CZ,and CZA samples.Details of these findings by correlating with the structural characterization studies are consolidated.展开更多
Hydrotalcite precursors of La modified Ni-Al2O3 and Ni-SiO2 catalysts prepared by co-precipitation method and the catalytic activities were examined for the production of COx-free H2 by CH4 decomposition. Physico-chem...Hydrotalcite precursors of La modified Ni-Al2O3 and Ni-SiO2 catalysts prepared by co-precipitation method and the catalytic activities were examined for the production of COx-free H2 by CH4 decomposition. Physico-chemical characteristics of fresh, reduced and used catalysts were evaluated by XRD, TPR and O2 pulse chemisorptions, TEM and BET-SA techniques. XRD studies showed phases due to hydrotalcite-like precursors in oven dried form produced dispersed NiO species upon calcination in static air above 450 C. Raman spectra of deactivated samples revealed the presence of both ordered and disordered forms of carbon. Ni-La-Al2O3catalyst with a mole ratio of Ni : La : Al = 2 : 0.1 : 0.9 exhibited tremendously high longevity with a hydrogen production rate of 1300 molH2 mol 1 Ni. A direct relationship between Ni metal surface area and hydrogen yields was established.展开更多
The vertically aligned one-dimensional(1 D)core-shell structure can maximize the exposure and use of the functionally active surface while maintaining the geometric effects caused by the underlying structure.Herein,we...The vertically aligned one-dimensional(1 D)core-shell structure can maximize the exposure and use of the functionally active surface while maintaining the geometric effects caused by the underlying structure.Herein,we have fabricated 1 D vertically aligned ZnO/V2O5 core-shell hetero-nanostructure nanorod arrays(NRs)for photoelectrochemical(PEC)water splitting.ZnO/V2O5 NRs were prepared through the hydrothermal growing of ZnO NRs and then radio frequency(RF)magnetron sputtering deposition of V2O5 for 300,600 and 900 s.The photocurrent density of ZnO/V2O5-based photoanodes was gradually increased with the sputtering time,reaching the maximum value of 1.21 m A/cm^2 at 1.23 V vs.reversible hydrogen electrode(RHE)for ZnO/V2O5-600,whereas for pure ZnO-based photoanode was 0.42 mA/cm^2.The incident photon to electron conversion efficiency(IPCE)of ZnO/V2O5-600 evaluated to be 82.3%which was 2.3 times higher than that of ZnO(36.4%).The improved PEC performance of ZnO/V2O5-600 is because the core-shell structure with a moderate thickness of the V2O5 layer has the extremely high carrier density,largest electrochemically active surface area(ECSA),largest carrier density,lowest charge recombination rate,and the longest lifetime of e-h pairs due to the formation of the staggered gap junction.This study provides an effective way to design and fabrication of hetero-nanostructures for highefficiency photoelectrodes.展开更多
This article reports the production of COx free hydrogen and carbon nanofibers by the catalytic decomposition of methane over Ni-Al2O3-SiO2 catalysts. The influence of reaction temperature, pretreatment temperature, a...This article reports the production of COx free hydrogen and carbon nanofibers by the catalytic decomposition of methane over Ni-Al2O3-SiO2 catalysts. The influence of reaction temperature, pretreatment temperature, and effect of reductive pretreatment on the decomposition of methane activity is investigated. The physico-chemical characteristics of fresh and deactivated samples were characterized using BET-SA, XRD, TPR, SEM/TEM, CHNS analyses and correlated with the methane decomposition results obtained. The Ni-Al-Si (4 : 0.5 : 1.5) catalyst reduced with hydrazine hydrate produced better H2 yields of ca. 1815 mol H2/mol Ni than the catalyst reduced with 5% H2/N2.展开更多
A series of titania nanoparticles and nanotubes deposited with various quantities of bismuth(Bi) were prepared via sol-gel and hydrothermal methods, respectively. They were then characterized using X-ray diffraction...A series of titania nanoparticles and nanotubes deposited with various quantities of bismuth(Bi) were prepared via sol-gel and hydrothermal methods, respectively. They were then characterized using X-ray diffraction spectroscopy(XRD), X-ray photo electron spectroscopy(XPS), UV–Vis diffused reflectance spectra(DRS), photoluminescence spectra(PLS), transmission electron microscopy(TEM), energy dispersive analysis of X-rays(EDAX), and BET surface analysis. These catalysts were employed for the photocatalytic production of hydrogen from a mixture of pure water and glycerol under solar light irradiation. The presence of the Bispecies was found to play a vital role in enhancing activity while minimizing electron hole recombination(relative to bare TiO). The nanotubes exhibited better activity than the nanoparticles of Bi-deposited TiO, showing the significance of the morphology; however, photocatalytic activity is predominantly dependent on the deposition of bismuth. The activity increased by approximately an order of magnitude at the optimum concentration of Bi deposited over TiO(2 wt%). The presence of the Bispecies played a vital role in minimizing electron hole recombination, resulting in higher activity compared to bare TiO.展开更多
Studies on surface analysis of carbon steel protected from corrosion in low chloride and nearly neutral aqueous environment by a synergistic mixture containing N,N-bis(phosphonomethyl) glycine (BPMG), zinc ions and ci...Studies on surface analysis of carbon steel protected from corrosion in low chloride and nearly neutral aqueous environment by a synergistic mixture containing N,N-bis(phosphonomethyl) glycine (BPMG), zinc ions and citrate ions are presented. The effect of addition of citrate to the binary system, BPMG-Zn2+, is quite significant and is well explored through various studies. The surface protective nature is maintained in the pH range 5 - 9. Potentiodynamic polarization studies inferred that the ternary inhibitor is a mixed inhibitor. Impedance studies of the metal/solution interface indicated that the surface film is highly protective against the corrosion of carbon steel in the chosen environment. X-ray photoelectron spectroscopic (XPS) analysis of the surface film showed the presence of the elements namely iron, phosphorus, nitrogen, carbon, oxygen and zinc. Deconvolution spectra of these elements in the surface film inferred the presence of oxides/hydroxides of iron(III), Zn(OH)2 and [Fe(III), Zn(II)-BPMG-citrate] heteropolynuclear multiligand complex. This inference is further supported by the reflection absorption Fourier transform infrared spectrum of the surface film. Analysis by scanning electron microscopy (SEM) is presented for both the corroded and protected metal surfaces. Based on all these results, a plausible mechanism of corrosion inhibition is proposed.展开更多
Enantiopure epoxides and their corresponding chiral vicinal diols serve as valuable intermediates in the synthesis of biologically active pharma and agro-compounds and also value added fine chemicals. Biocatalysts are...Enantiopure epoxides and their corresponding chiral vicinal diols serve as valuable intermediates in the synthesis of biologically active pharma and agro-compounds and also value added fine chemicals. Biocatalysts are well known for their selective hydrolysis of racemic epoxides to give optically pure chiral diols. This study highlights an efficient process of synthesis of chiral vicinal diols in good yields and enantioselectiviy using horse radish peroxidase enzyme immobilized on the amine functionalized magnetic nano particles (Fe3O4 nanoparticles) as enzyme carriers. It also facilitates separation of MNP-immobilized enzymes by applying external magnetic field. The immobilization of magnetic nano particles was confirmed by transmission electron microscope (TEM) and scanning electron microscope (SEM). The MNP-immobilized peroxidase enzyme improved stability of the enzyme and has shown broader substrate specificity in enantioselective hydrolysis of racemic epoxides, under mild and environmentally friendly conditions. The methodology MNP-immobilized enzyme developed in the synthesis of chiral diols has a potential for use in large-scale applications.展开更多
For investigation of equilibrium conditions of electrons in an atom, and Ionization Energies of Elements, a simplified deterministic static model is proposed. The electrons are initially uniformly and sparsely arrange...For investigation of equilibrium conditions of electrons in an atom, and Ionization Energies of Elements, a simplified deterministic static model is proposed. The electrons are initially uniformly and sparsely arranged on the outer surface of nucleus. Then, by taking into account the nucleus-electron interaction (attractive and repulsive) and the mutual electron-electron repulsions, and by a simple step-by-step nonlinear static analysis program, all the electrons are found to equilibrate on the outer surface of the same sphere, which is concentric and larger than nucleus. In a second stage, starting from an equilibrium sphere of electrons, one of the electrons is subjected to gradual forced removal, radially and outwards with respect to nucleus. Within each removal step, the produced work increment is determined and the increments are summed. When no more significant attraction is exerted by nucleus to removed electron, the total work gives the Ionization Energy. After removing of single electron, the remaining electrons fall on a lower shell, that is, they equilibrate on the outer surface of a smaller concentric sphere. For nucleus-electron interaction, an L-J (Lennard-Jones) type curve, attractive and repulsive, is adopted. When the parameter of this curve is n > 1.0, the Ionization Energy exhibits an upper bound. As parameter n increases from 1.0 up to 2.0, the attractive potential of L-J curve is gradually weakened. The proposed model is applied on Argon. It is observed that, as the number of electrons increases, the radius of equilibrium sphere increases, too, whereas the attractive nucleus-electron potential is reduced;thus the Ionization Energy is reduced, too. Particularly, as the number of electrons and the radius of equilibrium sphere exceed some critical values, the above two last quantities exhibit abrupt falls. A regular polyhedron is revealed, which can accommodate Elements up to atomic number Z = 146, that is 28 more than Z = 118 of existing last Element, as guide for initial locations of electrons in the above first program.展开更多
The ionic conductivity of 8, 9 and 10 mol% K+ doped Ag2CdI4 showed slight decrease whereas the phase transition was observed almost at the same temperature as it reported for pure Ag2CdI4. This decrease in conductivit...The ionic conductivity of 8, 9 and 10 mol% K+ doped Ag2CdI4 showed slight decrease whereas the phase transition was observed almost at the same temperature as it reported for pure Ag2CdI4. This decrease in conductivity likely results from decrease in free volume because of the larger K+ ions (rK+ = 133 pm and rAg+ = 129 pm) entering Ag2CdI4 lattice which is unchanging in size. The dielectric constant of Ag2CdI4 was found to increase with increasing temperature as the orientation of dipoles is facilitated in rising temperature.展开更多
Exploitation of green chemistry approach for the synthesis of Indium Oxide nanoparticles using green synthesis has received a great attention in the field of nanotechnology. To demonstrate a biogenic method that invol...Exploitation of green chemistry approach for the synthesis of Indium Oxide nanoparticles using green synthesis has received a great attention in the field of nanotechnology. To demonstrate a biogenic method that involves the Katira gum (Astragalus gummifer) leading to the formation of different morphological In<sub>2</sub>O<sub>3</sub> using the precursor Indium (III) Acetylacetonate and TG-DTA is characterised for calcination temperature and it is found to be above 500℃. Different techniques such as XRD, UV-VIS, SEM and EDAX have been used for the characterisation of In<sub>2</sub>O<sub>3</sub> nanoparticles. The average crystallite size of Indiumoxide nanoparticles is determined as 19 nm by using Scherrer’s Equation and PSA and studying optical properties.展开更多
Porous silica prepared by using an acrylic emulsion has been impregnated with bismuth ion resulting in Bi2Si05 species containing surface. The as-prepared materials have been characterized by X-ray diffraction spectro...Porous silica prepared by using an acrylic emulsion has been impregnated with bismuth ion resulting in Bi2Si05 species containing surface. The as-prepared materials have been characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and N2 adsorption/desorption techniques. EDAX analysis confirms the penetration of bismuth ions into the framework of silica to form Bi2SiO5, which is substantiated by XRD. The UV-Vis DRS shows that the catalysts are optically active and XPS confirms the inclusion of bismuth into the framework of silica. FTIR spectra illustrate the formation of Bi-O-Si linkages in the porous silica framework. SEM and TEM show the spherical morphology, whereas N2 adsorption/desorption study confirms the porosity of the prepared materials. The photocatalytic activity of the material is evaluated for the degradation of isoproturon herbicide and it is found that the material is active as compared to the commercial P-25 Degussa TiO2.展开更多
In this work, the influence of trivalent rare-earth dopants(Sm and La) on the structure-activity properties of CeO2 was thoroughly studied for diesel soot oxidation. For this, an optimized 40% of Sm and La was incor...In this work, the influence of trivalent rare-earth dopants(Sm and La) on the structure-activity properties of CeO2 was thoroughly studied for diesel soot oxidation. For this, an optimized 40% of Sm and La was incorporated into the CeO2 using a facile coprecipitation method from ultra-high dilute aqueous solutions. A systematic physicochemical characterization was carried out using X-ray diffraction(XRD), transmission electron microscopy(TEM), Brumauer-Emmett-teller method(BET) surface area, X-ray photoelectron spectroscopy(XPS), Raman, and H2-temperature programmed reduction(TPR) techniques. The soot oxidation efficiency of the catalysts was investigated using a thermogravimetric method. The XRD results suggested the formation of nanocrystalline single phase CeO2-Sm2O3 and CeO2-La2O3 solid solutions. The Sm- and La-doped CeO2 materials exhibited smaller crystallite size and higher BET surface area compared with the pure CeO2. Owing to the difference in the oxidation states of the dopants(Sm3+ and La3+) and the Ce4+, a number of oxygen vacancies were generated in CeO2-Sm2O3 and CeO2-La2O3 samples. The H2-TPR studies evidenced the improved reducible nature of the CeO2-Sm2O3 and CeO2-La2O3 samples compared with the CeO2. It was found that the addition of Sm and La to the CeO2 outstandingly enhanced its catalytic efficiency for the oxidation of diesel soot. The observed 50% soot conversion temperatures for the CeO2-Sm2O3, CeO2-La2O3 and CeO2 were ~790, 843 and 864 K(loose contact), respectively, and similar activity order was also found under the tight contact condition. The high soot oxidation efficacy of the CeO2-Sm2O3 sample was attributed to numerous catalytically favourable properties, like smaller crystallite size, larger surface area, abundant oxygen vacancies, and superior reducible nature.展开更多
Second order rate constants, ka have been determined for three bi-molecular Diels-Alder reactions to demonstrate that the high viscosity of ionic liquids can be a detrimental property in carrying out Diels-Alder react...Second order rate constants, ka have been determined for three bi-molecular Diels-Alder reactions to demonstrate that the high viscosity of ionic liquids can be a detrimental property in carrying out Diels-Alder reactions, if ionic liquids are employed as solvent media. It is possible to enhance the reaction rates of the reaction if a co-solvent is mixed in pure ionic liquid used as a solvent.展开更多
Studies on lactobionic acid introduced as a synergist in the presence of phosphonobutane-1,2,4-tricarboxylic acid (PBTC) and zinc ions for corrosion control of carbon steel in aqueous environment are presented. The ...Studies on lactobionic acid introduced as a synergist in the presence of phosphonobutane-1,2,4-tricarboxylic acid (PBTC) and zinc ions for corrosion control of carbon steel in aqueous environment are presented. The investigations revealed that lactobionic acid (LBA) acts as an excellent synergist in corrosion inhibition. Optimum concentrations of all the three components of the ternary formulation are established by gravimetric studies. Potentiodynamic polarization studies indicate that the new ternary system is a mixed inhibitor. Impedance studies show that a protective film is formed on the metal surface in the presence of the inhibitor formulation. The film is found to exhibit its protective nature even at higher temperatures up to 60 ~C. Analysis of the protective film by X-ray photoelectron spectroscopy (XPS) and reflection absorption Fourier transform infrared (FTIR) spectroscopy infers the presence of Zn(OH)2, oxides and hydroxides of iron and the inhibitor molecules in the surface film probably in the form of a complex, [Zn(II)-PBTC-LBA]. The morphological studies by scanning electron microscopy (SEM) and the topographical studies by atomic force microscopy (AFM) also indicate the presence of protective film on the metal surface. A plausible mechanism of corrosion inhibition is proposed.展开更多
文摘We investigated the aerobic oxidation of ethylbenzene in the absence of solvent or any additive carried out over Ni on different types of supports namely SiO2, hydroxyapatite, SBA-15, and USY Zeolites. The oxidation of ethylbenzene activities was measured in a round bottom flask immersed in oil bath at known reaction temperature. The physicochemical characteristics of the catalysts were examined by BET surface area, XRD, FT-IR and the oxidation activities were correlated with the acidities of the catalysts obtained by TPD of NH3. It was observed that both hydroxyapatite and USY (13% Na2O) supported Ni catalysts displayed higher ethylbenzene conversion and 80% selectivity towards acetophenone.
基金supported by Council of Scientific and Industrial Research(CSIR),New Delhi,India
文摘Ceria-zirconia(CZ)and ceria-terbia(CT)and alumina-supported ceria-zirconia(CZA)and ceria-terbia(CTA)solid solutions were synthesized by coprecipitation and deposition precipitation methods,respectively.Structural characteristics and catalytic activity of the synthesized samples have been investigated using X-ray diffraction(XRD),high resolution transmission electron microscopy(HRTEM),X-ray photoelectron spectroscopy(XPS),Raman spectroscopy(RS),and Brunauer-Emmett-Teller(BET)surface area measurements.To evaluate the catalytic properties,total oxygen storage capacity and CO oxidation activity measurements were carried out.The XRD analyses revealed the formation of Ce0.75Zr0.25O2 phase for CZ and Ce0.5Zr0.5O2 and Ce0.6Zr0.4O2 phases for CZA samples,respectively.While the formation of only Ce0.8Tb0.2O2-δphase was noted for both CT and CTA samples.All the supported and unsupported samples adopted a fluorite-type structure and exhibited cell parameters with respect to Vegard's rule.The HRTEM results indicated well-dispersed particles of the size around 5 nm.The RS measurements suggested the presence of oxygen vacancies due to defective structure formation.The XPS studies revealed the presence of cerium in both Ce 4+ and Ce 3+ oxidation states in different proportions.It was found that CO oxidation for CTA occurs at very much lower temperature than CT,CZ,and CZA samples.Details of these findings by correlating with the structural characterization studies are consolidated.
文摘Hydrotalcite precursors of La modified Ni-Al2O3 and Ni-SiO2 catalysts prepared by co-precipitation method and the catalytic activities were examined for the production of COx-free H2 by CH4 decomposition. Physico-chemical characteristics of fresh, reduced and used catalysts were evaluated by XRD, TPR and O2 pulse chemisorptions, TEM and BET-SA techniques. XRD studies showed phases due to hydrotalcite-like precursors in oven dried form produced dispersed NiO species upon calcination in static air above 450 C. Raman spectra of deactivated samples revealed the presence of both ordered and disordered forms of carbon. Ni-La-Al2O3catalyst with a mole ratio of Ni : La : Al = 2 : 0.1 : 0.9 exhibited tremendously high longevity with a hydrogen production rate of 1300 molH2 mol 1 Ni. A direct relationship between Ni metal surface area and hydrogen yields was established.
基金supported by National Research Foundation(NRF)of Korean grant funded by the Korea government(MSIP)(Grant number:2017R1E1A1A01074550)。
文摘The vertically aligned one-dimensional(1 D)core-shell structure can maximize the exposure and use of the functionally active surface while maintaining the geometric effects caused by the underlying structure.Herein,we have fabricated 1 D vertically aligned ZnO/V2O5 core-shell hetero-nanostructure nanorod arrays(NRs)for photoelectrochemical(PEC)water splitting.ZnO/V2O5 NRs were prepared through the hydrothermal growing of ZnO NRs and then radio frequency(RF)magnetron sputtering deposition of V2O5 for 300,600 and 900 s.The photocurrent density of ZnO/V2O5-based photoanodes was gradually increased with the sputtering time,reaching the maximum value of 1.21 m A/cm^2 at 1.23 V vs.reversible hydrogen electrode(RHE)for ZnO/V2O5-600,whereas for pure ZnO-based photoanode was 0.42 mA/cm^2.The incident photon to electron conversion efficiency(IPCE)of ZnO/V2O5-600 evaluated to be 82.3%which was 2.3 times higher than that of ZnO(36.4%).The improved PEC performance of ZnO/V2O5-600 is because the core-shell structure with a moderate thickness of the V2O5 layer has the extremely high carrier density,largest electrochemically active surface area(ECSA),largest carrier density,lowest charge recombination rate,and the longest lifetime of e-h pairs due to the formation of the staggered gap junction.This study provides an effective way to design and fabrication of hetero-nanostructures for highefficiency photoelectrodes.
文摘This article reports the production of COx free hydrogen and carbon nanofibers by the catalytic decomposition of methane over Ni-Al2O3-SiO2 catalysts. The influence of reaction temperature, pretreatment temperature, and effect of reductive pretreatment on the decomposition of methane activity is investigated. The physico-chemical characteristics of fresh and deactivated samples were characterized using BET-SA, XRD, TPR, SEM/TEM, CHNS analyses and correlated with the methane decomposition results obtained. The Ni-Al-Si (4 : 0.5 : 1.5) catalyst reduced with hydrazine hydrate produced better H2 yields of ca. 1815 mol H2/mol Ni than the catalyst reduced with 5% H2/N2.
基金support from a National Research Foundation of Korea(NRF)grant funded by the Ministry of Science,ICT&Future Planning(No.2016R1E1A1A01940995)
文摘A series of titania nanoparticles and nanotubes deposited with various quantities of bismuth(Bi) were prepared via sol-gel and hydrothermal methods, respectively. They were then characterized using X-ray diffraction spectroscopy(XRD), X-ray photo electron spectroscopy(XPS), UV–Vis diffused reflectance spectra(DRS), photoluminescence spectra(PLS), transmission electron microscopy(TEM), energy dispersive analysis of X-rays(EDAX), and BET surface analysis. These catalysts were employed for the photocatalytic production of hydrogen from a mixture of pure water and glycerol under solar light irradiation. The presence of the Bispecies was found to play a vital role in enhancing activity while minimizing electron hole recombination(relative to bare TiO). The nanotubes exhibited better activity than the nanoparticles of Bi-deposited TiO, showing the significance of the morphology; however, photocatalytic activity is predominantly dependent on the deposition of bismuth. The activity increased by approximately an order of magnitude at the optimum concentration of Bi deposited over TiO(2 wt%). The presence of the Bispecies played a vital role in minimizing electron hole recombination, resulting in higher activity compared to bare TiO.
文摘Studies on surface analysis of carbon steel protected from corrosion in low chloride and nearly neutral aqueous environment by a synergistic mixture containing N,N-bis(phosphonomethyl) glycine (BPMG), zinc ions and citrate ions are presented. The effect of addition of citrate to the binary system, BPMG-Zn2+, is quite significant and is well explored through various studies. The surface protective nature is maintained in the pH range 5 - 9. Potentiodynamic polarization studies inferred that the ternary inhibitor is a mixed inhibitor. Impedance studies of the metal/solution interface indicated that the surface film is highly protective against the corrosion of carbon steel in the chosen environment. X-ray photoelectron spectroscopic (XPS) analysis of the surface film showed the presence of the elements namely iron, phosphorus, nitrogen, carbon, oxygen and zinc. Deconvolution spectra of these elements in the surface film inferred the presence of oxides/hydroxides of iron(III), Zn(OH)2 and [Fe(III), Zn(II)-BPMG-citrate] heteropolynuclear multiligand complex. This inference is further supported by the reflection absorption Fourier transform infrared spectrum of the surface film. Analysis by scanning electron microscopy (SEM) is presented for both the corroded and protected metal surfaces. Based on all these results, a plausible mechanism of corrosion inhibition is proposed.
文摘Enantiopure epoxides and their corresponding chiral vicinal diols serve as valuable intermediates in the synthesis of biologically active pharma and agro-compounds and also value added fine chemicals. Biocatalysts are well known for their selective hydrolysis of racemic epoxides to give optically pure chiral diols. This study highlights an efficient process of synthesis of chiral vicinal diols in good yields and enantioselectiviy using horse radish peroxidase enzyme immobilized on the amine functionalized magnetic nano particles (Fe3O4 nanoparticles) as enzyme carriers. It also facilitates separation of MNP-immobilized enzymes by applying external magnetic field. The immobilization of magnetic nano particles was confirmed by transmission electron microscope (TEM) and scanning electron microscope (SEM). The MNP-immobilized peroxidase enzyme improved stability of the enzyme and has shown broader substrate specificity in enantioselective hydrolysis of racemic epoxides, under mild and environmentally friendly conditions. The methodology MNP-immobilized enzyme developed in the synthesis of chiral diols has a potential for use in large-scale applications.
文摘For investigation of equilibrium conditions of electrons in an atom, and Ionization Energies of Elements, a simplified deterministic static model is proposed. The electrons are initially uniformly and sparsely arranged on the outer surface of nucleus. Then, by taking into account the nucleus-electron interaction (attractive and repulsive) and the mutual electron-electron repulsions, and by a simple step-by-step nonlinear static analysis program, all the electrons are found to equilibrate on the outer surface of the same sphere, which is concentric and larger than nucleus. In a second stage, starting from an equilibrium sphere of electrons, one of the electrons is subjected to gradual forced removal, radially and outwards with respect to nucleus. Within each removal step, the produced work increment is determined and the increments are summed. When no more significant attraction is exerted by nucleus to removed electron, the total work gives the Ionization Energy. After removing of single electron, the remaining electrons fall on a lower shell, that is, they equilibrate on the outer surface of a smaller concentric sphere. For nucleus-electron interaction, an L-J (Lennard-Jones) type curve, attractive and repulsive, is adopted. When the parameter of this curve is n > 1.0, the Ionization Energy exhibits an upper bound. As parameter n increases from 1.0 up to 2.0, the attractive potential of L-J curve is gradually weakened. The proposed model is applied on Argon. It is observed that, as the number of electrons increases, the radius of equilibrium sphere increases, too, whereas the attractive nucleus-electron potential is reduced;thus the Ionization Energy is reduced, too. Particularly, as the number of electrons and the radius of equilibrium sphere exceed some critical values, the above two last quantities exhibit abrupt falls. A regular polyhedron is revealed, which can accommodate Elements up to atomic number Z = 146, that is 28 more than Z = 118 of existing last Element, as guide for initial locations of electrons in the above first program.
文摘The ionic conductivity of 8, 9 and 10 mol% K+ doped Ag2CdI4 showed slight decrease whereas the phase transition was observed almost at the same temperature as it reported for pure Ag2CdI4. This decrease in conductivity likely results from decrease in free volume because of the larger K+ ions (rK+ = 133 pm and rAg+ = 129 pm) entering Ag2CdI4 lattice which is unchanging in size. The dielectric constant of Ag2CdI4 was found to increase with increasing temperature as the orientation of dipoles is facilitated in rising temperature.
文摘Exploitation of green chemistry approach for the synthesis of Indium Oxide nanoparticles using green synthesis has received a great attention in the field of nanotechnology. To demonstrate a biogenic method that involves the Katira gum (Astragalus gummifer) leading to the formation of different morphological In<sub>2</sub>O<sub>3</sub> using the precursor Indium (III) Acetylacetonate and TG-DTA is characterised for calcination temperature and it is found to be above 500℃. Different techniques such as XRD, UV-VIS, SEM and EDAX have been used for the characterisation of In<sub>2</sub>O<sub>3</sub> nanoparticles. The average crystallite size of Indiumoxide nanoparticles is determined as 19 nm by using Scherrer’s Equation and PSA and studying optical properties.
基金PAKR and MS thank CSIR,New Delhi for funding this work under Emeritus Scientist Scheme
文摘Porous silica prepared by using an acrylic emulsion has been impregnated with bismuth ion resulting in Bi2Si05 species containing surface. The as-prepared materials have been characterized by X-ray diffraction spectroscopy (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis diffuse reflectance spectroscopy (UV-Vis DRS), scanning electron microscopy (SEM), energy dispersive analysis of X-ray (EDAX), transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR) and N2 adsorption/desorption techniques. EDAX analysis confirms the penetration of bismuth ions into the framework of silica to form Bi2SiO5, which is substantiated by XRD. The UV-Vis DRS shows that the catalysts are optically active and XPS confirms the inclusion of bismuth into the framework of silica. FTIR spectra illustrate the formation of Bi-O-Si linkages in the porous silica framework. SEM and TEM show the spherical morphology, whereas N2 adsorption/desorption study confirms the porosity of the prepared materials. The photocatalytic activity of the material is evaluated for the degradation of isoproturon herbicide and it is found that the material is active as compared to the commercial P-25 Degussa TiO2.
基金supported by the Department of Science and Technology,New Delhi,under SERB Scheme(SB/S1/PC-106/2012)
文摘In this work, the influence of trivalent rare-earth dopants(Sm and La) on the structure-activity properties of CeO2 was thoroughly studied for diesel soot oxidation. For this, an optimized 40% of Sm and La was incorporated into the CeO2 using a facile coprecipitation method from ultra-high dilute aqueous solutions. A systematic physicochemical characterization was carried out using X-ray diffraction(XRD), transmission electron microscopy(TEM), Brumauer-Emmett-teller method(BET) surface area, X-ray photoelectron spectroscopy(XPS), Raman, and H2-temperature programmed reduction(TPR) techniques. The soot oxidation efficiency of the catalysts was investigated using a thermogravimetric method. The XRD results suggested the formation of nanocrystalline single phase CeO2-Sm2O3 and CeO2-La2O3 solid solutions. The Sm- and La-doped CeO2 materials exhibited smaller crystallite size and higher BET surface area compared with the pure CeO2. Owing to the difference in the oxidation states of the dopants(Sm3+ and La3+) and the Ce4+, a number of oxygen vacancies were generated in CeO2-Sm2O3 and CeO2-La2O3 samples. The H2-TPR studies evidenced the improved reducible nature of the CeO2-Sm2O3 and CeO2-La2O3 samples compared with the CeO2. It was found that the addition of Sm and La to the CeO2 outstandingly enhanced its catalytic efficiency for the oxidation of diesel soot. The observed 50% soot conversion temperatures for the CeO2-Sm2O3, CeO2-La2O3 and CeO2 were ~790, 843 and 864 K(loose contact), respectively, and similar activity order was also found under the tight contact condition. The high soot oxidation efficacy of the CeO2-Sm2O3 sample was attributed to numerous catalytically favourable properties, like smaller crystallite size, larger surface area, abundant oxygen vacancies, and superior reducible nature.
文摘Second order rate constants, ka have been determined for three bi-molecular Diels-Alder reactions to demonstrate that the high viscosity of ionic liquids can be a detrimental property in carrying out Diels-Alder reactions, if ionic liquids are employed as solvent media. It is possible to enhance the reaction rates of the reaction if a co-solvent is mixed in pure ionic liquid used as a solvent.
文摘Studies on lactobionic acid introduced as a synergist in the presence of phosphonobutane-1,2,4-tricarboxylic acid (PBTC) and zinc ions for corrosion control of carbon steel in aqueous environment are presented. The investigations revealed that lactobionic acid (LBA) acts as an excellent synergist in corrosion inhibition. Optimum concentrations of all the three components of the ternary formulation are established by gravimetric studies. Potentiodynamic polarization studies indicate that the new ternary system is a mixed inhibitor. Impedance studies show that a protective film is formed on the metal surface in the presence of the inhibitor formulation. The film is found to exhibit its protective nature even at higher temperatures up to 60 ~C. Analysis of the protective film by X-ray photoelectron spectroscopy (XPS) and reflection absorption Fourier transform infrared (FTIR) spectroscopy infers the presence of Zn(OH)2, oxides and hydroxides of iron and the inhibitor molecules in the surface film probably in the form of a complex, [Zn(II)-PBTC-LBA]. The morphological studies by scanning electron microscopy (SEM) and the topographical studies by atomic force microscopy (AFM) also indicate the presence of protective film on the metal surface. A plausible mechanism of corrosion inhibition is proposed.