期刊文献+
共找到73篇文章
< 1 2 4 >
每页显示 20 50 100
Mechanical and hydraulic properties of carbonate rock:The critical role of porosity 被引量:1
1
作者 Kam Ng J.Carlos Santamarina 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第4期814-825,共12页
Carbonate rocks are extensively used in civil infrastructure and play a critical role in geoenergy geoengineering,either as hydrocarbon reservoirs or potential repositories for CO_(2)geological storage.Carbonate genes... Carbonate rocks are extensively used in civil infrastructure and play a critical role in geoenergy geoengineering,either as hydrocarbon reservoirs or potential repositories for CO_(2)geological storage.Carbonate genesis and diagenetic overprint determine the properties of carbonate rocks.This study combines recent data gathered from Madison Limestone and an extensive dataset compiled from published sources to analyze the hydraulic and mechanical properties of limestone carbonate rocks.Physical models and data analyses recognize the inherently granular genesis of carbonate rocks and explain the strong dependency of physical properties on porosity.The asymptotically-correct power model in terms of(1-Ф/Ф*)a is a good approximation to global trends of unconfined stiffness E and unconfined compressive strength UCS,cohesive intercept in Mohr-Coulomb failure envelopes,and the brittle-toductile transition stress.This power model is the analytical solution for the mechanical properties of percolating granular structures.We adopted a limiting granular porosityФ*=0.5 for all models,which was consistent with the loosest packing of monosize spheres.The fitted power model has exponent(α=2)in agreement with percolation theory and highlights the sensitivity of mechanical properties to porosity.Data and models confirm a porosity-independent ratio between unconfined stiffness and strength,and the ratio follows a log-normal distribution with mean(E/UCS)≈300.The high angle of internal shear strength measured for carbonate rocks reflects delayed contact failure with increased confinement,and it is not sensitive to porosity.Permeability spans more than six orders of magnitude.Grain size controls pore size and determines the reference permeability k^(*)at the limiting porosityФ*=0.5.For a given grain size from fine to coarse-grained dominant carbonates,permeability is very sensitive to changes in porosity,suggesting preferential changes in the internal pore network during compaction. 展开更多
关键词 Rock porosity Carbonate permeability Rock unconfined stiffness Unconfined compressive strength(UCS)
下载PDF
Defect Engineering of Disordered Carbon Anodes with Ultra-High Heteroatom Doping Through a Supermolecule-Mediated Strategy for Potassium-Ion Hybrid Capacitors 被引量:1
2
作者 Lei Zhao Shirong Sun +7 位作者 Jinxin Lin Lei Zhong Liheng Chen Jing Guo Jian Yin Husam N.Alshareef Xueqing Qiu Wenli Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第3期248-265,共18页
Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons... Amorphous carbons are promising anodes for high-rate potassium-ion batteries.Most low-temperature annealed amorphous carbons display unsatisfactory capacities.Heteroatom-induced defect engineering of amorphous carbons could enhance their reversible capacities.Nevertheless,most lignocellulose biomasses lack heteroatoms,making it a challenge to design highly heteroatom-doped carbons(>10 at%).Herein,we report a new preparation strategy for amorphous carbon anodes.Nitrogen/sulfur co-doped lignin-derived porous carbons(NSLPC)with ultra-high nitrogen doping levels(21.6 at%of N and 0.8 at%of S)from renewable lignin biomacromolecule precursors were prepared through a supramolecule-mediated pyrolysis strategy.This supermolecule/lignin composite decomposes forming a covalently bonded graphitic carbon/amorphous carbon intermediate product,which induces the formation of high heteroatom doping in the obtained NSLPC.This unique pyrolysis chemistry and high heteroatom doping of NSLPC enable abundant defective active sites for the adsorption of K+and improved kinetics.The NSLPC anode delivered a high reversible capacity of 419 mAh g^(-1)and superior cycling stability(capacity retention of 96.6%at 1 A g^(-1)for 1000 cycles).Potassiumion hybrid capacitors assembled by NSLPC anode exhibited excellent cycling stability(91%capacity retention for 2000 cycles)and a high energy density of 71 Wh kg^(-1)at a power density of 92 W kg^(-1). 展开更多
关键词 Defect HETEROATOM Active sites SUPRAMOLECULE Potassium-ion hybrid capacitors
下载PDF
Strategic comparison of membrane-assisted and membrane-less water electrolyzers and their potential application in direct seawater splitting(DSS)
3
作者 Abdul Malek Xu Lu +2 位作者 Paul R.Shearing Dan J.L.Brett Guanjie He 《Green Energy & Environment》 SCIE EI CAS CSCD 2023年第4期989-1005,共17页
Electrocatalytic splitting of water by means of renewable energy as the electricity supply is one of the most promising methods for storing green renewable energy as hydrogen. Although two-thirds of the earth’s surfa... Electrocatalytic splitting of water by means of renewable energy as the electricity supply is one of the most promising methods for storing green renewable energy as hydrogen. Although two-thirds of the earth’s surface is covered with water, there is inadequacy of freshwater in most parts of the world. Hence, splitting seawater instead of freshwater could be a truly sustainable alternative. However, direct seawater splitting faces challenges because of the complex composition of seawater. The composition, and hence, the local chemistry of seawater may vary depending on its origin, and in most cases, tracking of the side reactions and standardizing and customizing the catalytic process will be an extra challenge. The corrosion of catalysts and competitive side reactions due to the presence of various inorganic and organic pollutants create challenges for developing stable electro-catalysts. Hence, seawater splitting generally involves a two-step process, i.e., purification of seawater using reverse osmosis and then subsequent fresh water splitting. However, this demands two separate chambers and larger space, and increases complexity of the reactor design. Recently, there have been efforts to directly split seawater without the reverse osmosis step. Herein, we represent the most recent innovative approaches to avoid the two-step process, and compare the potential application of membrane-assisted and membrane-less electrolyzers in direct seawater splitting(DSS). We particularly discuss the device engineering, and propose a novel electrolyzer design strategies for concentration gradient based membrane-less microfluidic electrolyzer. 展开更多
关键词 Electrocatalytic seawater splitting Direct seawater splitting Osmosis Concentration cells Membrane-less electrolyzer Microfluidic electrolyzer
下载PDF
Review of deep learning algorithms in molecular simulations and perspective applications on petroleum engineering
4
作者 Jie Liu Tao Zhang Shuyu Sun 《Geoscience Frontiers》 SCIE CAS CSCD 2024年第2期55-67,共13页
In the last few decades,deep learning(DL)has afforded solutions to macroscopic problems in petroleum engineering,but mechanistic problems at the microscale have not benefited from it.Mechanism studies have been the st... In the last few decades,deep learning(DL)has afforded solutions to macroscopic problems in petroleum engineering,but mechanistic problems at the microscale have not benefited from it.Mechanism studies have been the strong demands for the emerging projects,such as the gas storage and hydrate production,and for some problems encountered in the storage process,which are common found as the chemical interaction between injected gas and mineral,and the formation of hydrate.Emerging advances in DL technology enable solving molecular dynamics(MD)with quantum accuracy.The conventional quantum chemical method is computational expensive,whereas the classical MD method cannot guarantee high accuracy because of its empirical force field parameters.With the help of the DL force field,precision at the quantum chemistry level can be achieved in MD.Moreover,the DL force field promotes the computational speed compared with first-principles calculations.In this review,the basic knowledge of the molecular force field and deep neural network(DNN)is first introduced.Then,three representative opensource packages relevant to the DL force field are introduced.As the most common components in the development of oil and gas reservoirs,water and methane are studied from the aspects of computational efficiency and chemical reaction respectively,providing the foundation of oil and gas researches.However,in the oil and gas problems,the complex molecular topo structures and various element types set a high challenge for the DL techniques in MD.Regarding the computational efficiency,it needs improvement via GPU and parallel accelerations to compete with classical MD.Even with such difficulties,the booming of this technique in the area of petroleum engineering can be predictable. 展开更多
关键词 Deep neural network Molecular dynamics Force field Petroleum engineering
原文传递
Effect of rotating gliding discharges on the lean blow-off limit of biogas flames
5
作者 Muhammad Saqib AKHTAR Mhedine ALICHERIF +1 位作者 Bing WANG Deanna A.LACOSTE 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第10期116-122,共7页
This study investigates the effect of a rotating gliding discharge on synthetic biogas combustion at atmospheric pressure.Synthetic biogas was produced by mixing methane and carbon dioxide.Three mixtures were consider... This study investigates the effect of a rotating gliding discharge on synthetic biogas combustion at atmospheric pressure.Synthetic biogas was produced by mixing methane and carbon dioxide.Three mixtures were considered:100%/0%,70%/30%,and 50%/50%of methane and carbon dioxide,respectively.The plasma effect was investigated in a low-swirl-number burner equipped with a high-voltage electrode to produce gliding discharges.The effect of plasma on the stability limits of the flame is reported for several electrical powers.During plasma-assisted combustion,the lean blow-off limits of biogas-air flames were significantly improved,which agrees with what can be found in the literature for other fuels.The electrical parameters of the discharge and the plasma emissions were measured using electric probes and emission spectroscopy,respectively.The mixture with the CO_(2)dilution was associated with a higher reduced electric field and higher ion production.A better understanding of the excited-species concentration evolution during plasma is necessary and will be investigated in future work. 展开更多
关键词 plasma-assisted combustion non-equilibrium plasma METHANE carbon dioxide
下载PDF
Polymer Fiber Rigid Network with High Glass Transition Temperature Reinforces Stability of Organic Photovoltaics
6
作者 Qiao Zhou Cenqi Yan +18 位作者 Hongxiang Li Zhendong Zhu Yujie Gao Jie Xiong Hua Tang Can Zhu Hailin Yu Sandra P.Gonzalez Lopez Jiayu Wang Meng Qin Jianshu Li Longbo Luo Xiangyang Liu Jiaqiang Qin Shirong Lu Lei Meng Frédéric Laquai Yongfang Li Pei Cheng 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期56-69,共14页
Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on ta... Organic photovoltaics(OPVs)need to overcome limitations such as insufficient thermal stability to be commercialized.The reported approaches to improve stability either rely on the development of new materials or on tailoring the donor/acceptor morphology,however,exhibiting limited applicability.Therefore,it is timely to develop an easy method to enhance thermal stability without having to develop new donor/acceptor materials or donor–acceptor compatibilizers,or by introducing another third component.Herein,a unique approach is presented,based on constructing a polymer fiber rigid network with a high glass transition temperature(T_(g))to impede the movement of acceptor and donor molecules,to immobilize the active layer morphology,and thereby to improve thermal stability.A high-T_(g) one-dimensional aramid nanofiber(ANF)is utilized for network construction.Inverted OPVs with ANF network yield superior thermal stability compared to the ANF-free counterpart.The ANF network-incorporated active layer demonstrates significantly more stable morphology than the ANF-free counterpart,thereby leaving fundamental processes such as charge separation,transport,and collection,determining the device efficiency,largely unaltered.This strategy is also successfully applied to other photovoltaic systems.The strategy of incorporating a polymer fiber rigid network with high T_(g) offers a distinct perspective addressing the challenge of thermal instability with simplicity and universality. 展开更多
关键词 Inverted organic photovoltaics Thermal stability Aramid nanofibers Morphology control Charge carrier dynamics
下载PDF
Synthesis strategies of hard carbon anodes for sodium-ion batteries
7
作者 Jian Yin Ye Shui Zhang +2 位作者 Hanfeng Liang Wenli Zhang Yunpei Zhu 《Materials Reports(Energy)》 EI 2024年第2期1-22,共22页
Sodium-ion battery(SIB)is an ideal candidate for large-scale energy storage due to high abundant sodium sources,relatively high energy density,and potentially low costs.Hard carbons,as one of the most promising anodes... Sodium-ion battery(SIB)is an ideal candidate for large-scale energy storage due to high abundant sodium sources,relatively high energy density,and potentially low costs.Hard carbons,as one of the most promising anodes,could deliver high plateau capacities at low potentials,which boosts the energy densities of SIBs.Their slope capacities have been demonstrated from the defect adsorption of sodium ions,while the plateau capacity depends highly on intercalation and pore filling.Nevertheless,the specific structures of sodium ions stored in hard carbons have not been clarified,namely active sites of adsorption,intercalation,and pore-filling mechanisms.Therefore,delicate synthesis methods are required to prepare hard carbons with controllable specific structures,along with elucidating the precise active sites for enhancing the Na-ion storage performance.To offer databases for future designs,we summarized the synthesis strategies of hard carbon anodes for constructing active sites of plateau capacities.Synthesis methods were highlighted with corresponding influences on the meticulous structures of hard carbons and Na-ion storage behaviors.Last but not least,perspectives were proposed for developing hard carbon anodes from the points of research and practical applications. 展开更多
关键词 HARD CARBON anodeCarbon synthesisSodium-ion batteryStructure-function RELATIONSHIP
下载PDF
Engineering the Coordination Sphere of Isolated Active Sites to Explore the Intrinsic Activity in Single-Atom Catalysts 被引量:13
8
作者 Xin Wu Huabin Zhang +4 位作者 Shouwei Zuo Juncai Dong Yang Li Jian Zhang Yu Han 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第9期136-163,共28页
Reducing the dimensions of metallic nanoparticles to isolated,single atom has attracted considerable attention in heterogeneous catalysis,because it significantly improves atomic utilization and often leads to distinc... Reducing the dimensions of metallic nanoparticles to isolated,single atom has attracted considerable attention in heterogeneous catalysis,because it significantly improves atomic utilization and often leads to distinct catalytic performance.Through extensive research,it has been recognized that the local coordination environment of single atoms has an important influence on their electronic structures and catalytic behaviors.In this review,we summarize a series of representative systems of single-atom catalysts,discussing their preparation,characterization,and structure-property relationship,with an emphasis on the correlation between the coordination spheres of isolated reactive centers and their intrinsic catalytic activities.We also share our perspectives on the current challenges and future research promises in the development of single-atom catalysis.With this article,we aim to highlight the possibility of finely tuning the catalytic performances by engineering the coordination spheres of single-atom sites and provide new insights into the further development for this emerging research field. 展开更多
关键词 Isolated atoms Coordination sphere Intrinsic activity Single-atom catalysts
下载PDF
Resolving co- and early post-seismic slip variations of the 2021 MW 7.4 Madoi earthquake in east Bayan Har block with a block-wide distributed deformation mode from satellite synthetic aperture radar data 被引量:14
9
作者 Shuai Wang Chuang Song +1 位作者 ShanShan Li Xing Li 《Earth and Planetary Physics》 CSCD 2022年第1期108-122,共15页
On 21 May 2021(UTC),an MW 7.4 earthquake jolted the east Bayan Har block in the Tibetan Plateau.The earthquake received widespread attention as it is the largest event in the Tibetan Plateau and its surroundings since... On 21 May 2021(UTC),an MW 7.4 earthquake jolted the east Bayan Har block in the Tibetan Plateau.The earthquake received widespread attention as it is the largest event in the Tibetan Plateau and its surroundings since the 2008 Wenchuan earthquake,and especially in proximity to the seismic gaps on the east Kunlun fault.Here we use satellite interferometric synthetic aperture radar data and subpixel offset observations along the range directions to characterize the coseismic deformation of the earthquake.Range offset displacements depict clear surface ruptures with a total length of~170 km involving two possible activated fault segments in the earthquake.Coseismic modeling results indicate that the earthquake was dominated by left-lateral strike-slip motions of up to 7 m within the top 12 km of the crust.The well-resolved slip variations are characterized by five major slip patches along strike and 64%of shallow slip deficit,suggesting a young seismogenic structure.Spatial-temporal changes of the postseismic deformation are mapped from early 6-day and 24-day InSAR observations,and are well explained by time-dependent afterslip models.Analysis of Global Navigation Satellite System(GNSS)velocity profiles and strain rates suggests that the eastward extrusion of plateau is diffusely distributed across the east Bayan Har block,but exhibits significant lateral heterogeneities,as evidenced by magnetotelluric observations.The block-wide distributed deformation of the east Bayan Har block along with the significant co-and post-seismic stress loadings from the Madoi earthquake imply high seismic risks along regional faults,especially the Tuosuo Lake and Maqên-Maqu segments of the Kunlun fault that are known as seismic gaps. 展开更多
关键词 Madoi earthquake Bayan Har block synthetic aperture radar data co-and post-seismic slip block-wide distributed deformation seismic risk
下载PDF
Photophysics and electrochemistry relevant to photocatalytic water splitting involved at solid–electrolyte interfaces 被引量:3
10
作者 Tatsuya Shinagawa Zhen Cao +1 位作者 Luigi Cavallo Kazuhiro Takanabe 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第2期259-269,共11页
Direct photon to chemical energy conversion using semiconductor–electrocatalyst–electrolyte interfaces has been extensively investigated for more than a half century. Many studies have focused on screening materials... Direct photon to chemical energy conversion using semiconductor–electrocatalyst–electrolyte interfaces has been extensively investigated for more than a half century. Many studies have focused on screening materials for efficient photocatalysis. Photocatalytic efficiency has been improved during this period but is not sufficient for industrial commercialization. Detailed elucidation on the photocatalytic water splitting process leads to consecutive six reaction steps with the fundamental parameters involved: The photocatalysis is initiated involving photophysics derived from various semiconductor properties(1: photon absorption, 2: exciton separation). The generated charge carriers need to be transferred to surfaces effectively utilizing the interfaces(3: carrier diffusion, 4: carrier transport). Consequently, electrocatalysis finishes the process by producing products on the surface(5: catalytic efficiency, 6: mass transfer of reactants and products). Successful photocatalytic water splitting requires the enhancement of efficiency at each stage. Most critically, a fundamental understanding of the interfacial phenomena is highly desired for establishing 'photocatalysis by design' concepts, where the kinetic bottleneck within a process is identified by further improving the specific properties of photocatalytic materials as opposed to blind material screening. Theoretical modeling using the identified quantitative parameters can effectively predict the theoretically attainable photon-conversion yields. This article provides an overview of the state-of-the-art theoretical understanding of interfacial problems mainly developed in our laboratory.Photocatalytic water splitting(especially hydrogen evolution on metal surfaces) was selected as a topic,and the photophysical and electrochemical processes that occur at semiconductor–metal, semiconductor–electrolyte and metal–electrolyte interfaces are discussed. 展开更多
关键词 PHOTOCATALYSIS Interface Water splitting Modeling ELECTROCATALYSIS Hydrogen evolution
下载PDF
A Hybrid Local/Nonlocal Continuum Mechanics Modeling and Simulation of Fracture in Brittle Materials 被引量:3
11
作者 Yongwei Wang Fei Han Gilles Lubineau 《Computer Modeling in Engineering & Sciences》 SCIE EI 2019年第11期399-423,共25页
Classical continuum mechanics which leads to a local continuum model,encounters challenges when the discontinuity appears,while peridynamics that falls into the category of nonlocal continuum mechanics suffers from a ... Classical continuum mechanics which leads to a local continuum model,encounters challenges when the discontinuity appears,while peridynamics that falls into the category of nonlocal continuum mechanics suffers from a high computational cost.A hybrid model coupling classical continuum mechanics with peridynamics can avoid both disadvantages.This paper describes the hybrid model and its adaptive coupling approach which dynamically updates the coupling domains according to crack propagations for brittle materials.Then this hybrid local/nonlocal continuum model is applied to fracture simulation.Some numerical examples like a plate with a hole,Brazilian disk,notched plate and beam,are performed for verification and validation.In addition,a peridynamic software is introduced,which was recently developed for the simulation of the hybrid local/nonlocal continuum model. 展开更多
关键词 PERIDYNAMICS HYBRID model adaptive coupling FRACTURE simulation MORPHING function numerical DISCRETIZATION
下载PDF
Growth behavior and electronic properties of Ge_(n+1) and AsGe_n(n = 1–20) clusters: a DFT study 被引量:3
12
作者 M.Benaida K.E.Aiadi +3 位作者 S.Mahtout S.Djaadi W.Rammal M.Harb 《Journal of Semiconductors》 EI CAS CSCD 2019年第3期9-17,共9页
We present a systematic computational study based on the density functional theory(DFT) aiming to high light the possible effects of one As doping atom on the structural, energetic, and electronic properties of differ... We present a systematic computational study based on the density functional theory(DFT) aiming to high light the possible effects of one As doping atom on the structural, energetic, and electronic properties of different isomers of Ge_(n+1) clusters with n = 1–20 atoms. By considering a large number of structures for each cluster size, the lowest-energy isomers are determined. The lowest-energy isomers reveal three-dimensional structures starting from n = 5. Their relative stability versus atomic size is examined based on the calculated binding energy, fragmentation energy, and second-order difference of energy. Doping Ge_(n+1) clusters with one As atom does not improve their stability. The electronic properties as a function of the atomic size are also discussed from the calculated HOMO–LUMO energy gap, vertical ionization potential, vertical electron affinity, and chemical hardness. The obtained results are significantly affected by the inclusion of one As atom into a Gen cluster. 展开更多
关键词 density FUNCTIONAL theory As–Ge CLUSTERS structural PROPERTIES ELECTRONIC PROPERTIES
下载PDF
Phase control of 2D binary hydroxides nanosheets via controlling-release strategy for enhanced oxygen evolution reaction and supercapacitor performances 被引量:2
13
作者 Min Wei Jing Li +1 位作者 Wei Chu Ning Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2019年第11期26-33,共8页
An OH^--slow-release strategy was established to controllably tune the( α-and β-) phase of nickel cobalt binary hydroxide in the presence of ammonium chloride. Ammonium chloride is added to the ionic solution to reg... An OH^--slow-release strategy was established to controllably tune the( α-and β-) phase of nickel cobalt binary hydroxide in the presence of ammonium chloride. Ammonium chloride is added to the ionic solution to regulate the p H of the solution and slow down the release of OH^-, effectively regulating the phase, nanostructure, interlayer spacing, surface area, thickness, and the performance of binary Ni –Co hydroxide. The ion-slow-release mechanism is conducive to the formation of α-phase with larger interlayer spacing and thinner flakes rather than β-phase. Attributed to the enlarged interlayer spacing, thinner nanosheets, and more exposed active sites, the resultant α-phase hydroxides(NCNS-5.2), displayed much lower over potential of 285 mV with respect to the dense-stacked β-phase hydroxides(362 mV) for OER at 10 mA/cm^2. It also exhibited high specific capacitance of 1474.2 F/g, when tested at 0.5 A/g within a voltage range of 0–0.45 Vvs. Hg/Hg O. This composite was also stable for water oxidation reaction and supercapacitor. The proof-of-concept of using controlled-release agent may provide suggestive insights for the material innovation and a variety of applications. 展开更多
关键词 Slow-release STRATEGY Layered double hydroxides(LDHs) NANOSHEETS Oxygen evolution reaction SUPERCAPACITOR
下载PDF
Passivation agent with dipole moment for surface modification towards efficient and stable perovskite solar cells 被引量:1
14
作者 Ge Wang Chen Wang +5 位作者 Yajun Gao Shanpeng Wen Roderick C.I.MacKenzie Liuxing Guo Wei Dong Shengping Ruan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2022年第1期55-61,I0003,共8页
Recently,there has been renewed interest in interface engineering as a means to further push the performance of perovskite solar cells closer to the Schockly-Queisser limit.Herein,for the first time we employ a multi-... Recently,there has been renewed interest in interface engineering as a means to further push the performance of perovskite solar cells closer to the Schockly-Queisser limit.Herein,for the first time we employ a multi-functional 4-chlorobenzoic acid to produce a self-assembled monolayer on a perovskite surface.With this interlayer we observe passivation of perovskite surface defects and a significant suppression of non-radiative charge recombination.Furthermore,at the surface of the interlayer we observe,charge dipoles which tune the energy level alignment,enabling a larger energetic driving force for hole extraction.The perovskite surface becomes more hydrophilic due to the presence of the interlayer.Consequently,we observe an improvement in open-circuit voltage from 1.08 to 1.16 V,a power conversion efficiency improvement from 18%to 21%and an improved stability under ambient conditions.Our work highlights the potential of SAMs to engineer the photo-electronic properties and stability of perovskite interfaces to achieve high-performance light harvesting devices. 展开更多
关键词 4-Chlorobenzoic acid Interface engineering PASSIVATION Surface dipole Perovskite solar cells
下载PDF
Experimental observation of interlayer perpendicular standing spin wave mode with low damping in skyrmion-hosting[Pt/Co/Ta]_(10)multilayer
15
作者 Zhen-Dong Chen Mei-Yang Ma +6 位作者 Sen-Fu Zhang Mang-Yuan Ma Zi-Zhao Pan Xi-Xiang Zhang Xue-Zhong Ruan Yong-Bing Xu Fu-Sheng Ma 《Chinese Physics B》 SCIE EI CAS CSCD 2022年第11期548-554,共7页
An interlayer perpendicular standing spin wave mode is observed in the skyrmion-hosting[Pt/Co/Ta]_(10) multilayer by measuring the time-resolved magneto-optical Kerr effect.The observed interlayer mode depends on the ... An interlayer perpendicular standing spin wave mode is observed in the skyrmion-hosting[Pt/Co/Ta]_(10) multilayer by measuring the time-resolved magneto-optical Kerr effect.The observed interlayer mode depends on the interlayer spin-pumping and spin transfer torque among the neighboring Co layers.This mode shows monotonically increasing frequency-field dependence which is similar to the ferromagnetic resonance mode,but within higher frequency range.Besides,the damping of the interlayer mode is found to be a relatively low constant value of 0.027 which is independent of the external field.This work expounds the potential application of the[heavy-metal/ferromagnetic-metal]_(n) multilayers to skyrmion-based magnonic devices which can provide multiple magnon modes,relatively low damping,and skyrmion states,simultaneously. 展开更多
关键词 dynamic properties of magnetization spin waves domain structure magnetic properties of interfaces
下载PDF
A Study of Precipitation Climatology and Its Variability over Europe Using an Advanced Regional Model (WRF)
16
作者 Hari Prasad Dasari Venkata Srinivas Challa 《American Journal of Climate Change》 2015年第1期22-39,共18页
In recent years long-term precipitation trends on a regional scale have been given emphasis due to the impacts of global warming on regional hydrology. In this study, regional precipitation trends are simulated over t... In recent years long-term precipitation trends on a regional scale have been given emphasis due to the impacts of global warming on regional hydrology. In this study, regional precipitation trends are simulated over the Europe continent for a 60-year period in 1950-2010 using an advanced regional model, WRF, to study extreme precipitation events over Europe. The model runs continuously for each year during the period at a horizontal resolution of 25 km with initial/ boundary conditions derived from the National Center for Environmental Prediction (NCEP) 2.5 degree reanalysis data sets. The E-OBS 0.25 degree rainfall observation analysis is used for model validation. Results indicate that the model could reproduce the spatial annual rainfall pattern over Europe with low amounts (250 - 750 mm) in Iberian Peninsula, moderate to large amounts (750 - 1500 mm) in central, eastern and northeastern parts of Europe and extremely heavy falls (1500 - 2000 mm) in hilly areas of Alps with a slight overestimation in Alps and underestimation in other parts of Europe. The regional model integrations showed increasing errors (mean absolute errors) and decreasing correlations with increasing time scale (daily to seasonal). Rainfall is simulated relatively better in Iberian Peninsula, northwest and central parts of Europe. A large spatial variability with the highest number of wet days over eastern, central Europe and Alps (~200 days/year) and less number of wet days over Iberian Peninsula (≤150 days/year) is also found in agreement with observations. The model could simulate the spatial rainfall climate variability reasonably well with low rainfall days (1 - 10 mm/days) in almost all zones, heavy rainfall events in western, northern, southeastern hilly and coastal zones and extremely heavy rainfall events in northern coastal zones. An increasing trend of heavy rainfall in central, southern and southeastern parts, a decreasing trend in Iberian Peninsula and a steady trend in other zones are found. Overall, the simulated rainfall climatology was reproduced well for the low and heavy rainfall followed by very heavy and extremely heavy rainfall in Europe and the simulation is better in the Iberian west coast, central northern Europe and Alps Mountains. 展开更多
关键词 Regional Climate RAINFALL EUROPE WRF-ARW THREAT SCORE
下载PDF
Experimental Investigation of the Early Stage of Precipitation on Binary Al-Li, Al-Cu Alloys and Ternary Al-Li-Cu Alloys by Means of Atom Probe Tomography
17
作者 Muna Khushaim Torben Boll 《Open Journal of Metal》 2016年第2期25-44,共20页
Aluminum-based alloys play a key role in modern engineering and are widely used in construction components in aircraft, automobiles and other means of transportation due to their light weight and superior mechanical p... Aluminum-based alloys play a key role in modern engineering and are widely used in construction components in aircraft, automobiles and other means of transportation due to their light weight and superior mechanical properties. Introduction of different nano-structure features can improve the service and the physical properties of such alloys. An improvement of an Al-based alloy has been performed based on the understanding of the relationships among compositions, processing, microstructural characteristics and properties. Knowledge of the decomposition process of the microstructure during the precipitation reaction is particularly important for future technical developments. The objective of this study is to investigate the nano-scale chemical composition in the Al-Cu, Al-Li and Al-Li-Cu alloys during the early stage of the precipitation sequence and to describe whether this compositional difference correlates with variations in the observed precipitation kinetics. Investigation of the fine scale segregation effects of dilute solutes in aluminum alloys which were experienced different heat treatments by using atom probe tomography has been achieved. The results show that an Al-1.7 at.% Cu alloy requires a long ageing time of approximately 8 h at 160°C to allow the diffusion of Cu atoms into Al matrix. For the Al-8.2 at.% Li alloy, a combination of both the natural ageing condition (48 h at room temperature) and a short artificial ageing condition (5 min at 160°C) induces increasing on the number density of the Li clusters and hence increase number of precipitated particles. Applying this combination of natural ageing and short artificial ageing conditions onto the ternary Al-4 at.% Li-1.7 at.% Cu alloy induces the formation of a Cu-rich phase. Increasing the Li content in the ternary alloy up to 8 at.% and increasing the ageing time to 30 min resulted in the precipitation processes ending with δ' particles. Thus the results contribute to the understanding of Al-alloy design. 展开更多
关键词 Phase Decomposition Atom Probe Tomography Early Stage of Precipitation
下载PDF
Design,simulation,and testing of a tunable MEMS multi-threshold inertial switch
18
作者 Qiu Xu Rodrigo T.Rocha +2 位作者 Yousef Algoos Eric Feron Mohammad I.Younis 《Microsystems & Nanoengineering》 SCIE EI CSCD 2024年第2期37-46,共10页
This paper presents a tunable multi-threshold micro-electromechanical inertial switch with adjustable threshold capability.The demonstrated device combines the advantages of accelerometers in providing quantitative ac... This paper presents a tunable multi-threshold micro-electromechanical inertial switch with adjustable threshold capability.The demonstrated device combines the advantages of accelerometers in providing quantitative acceleration measurements and g-threshold switches in saving power when in the inactive state upon experiencing acceleration below the thresholds.The designed proof-of-concept device with two thresholds consists of a cantilever microbeam and two stationary electrodes placed at different positions in the sensing direction.The adjustable threshold capability and the effect of the shock duration on the threshold acceleration are analytically investigated using a nonlinear beam model.Results are shown for the relationships among the applied bias voltage,the duration of shock impact,and the tunable threshold.The fabricated prototypes are tested using a shock-table system.The analytical results agree with the experimental results.The designed device concept is very promising for the classification of the shock and impact loads in transportation and healthcare applications. 展开更多
关键词 TUNABLE ACCELERATION TESTING
原文传递
Phase separation and domain crystallinity control enable open-air-printable highly efficient and sustainable organic photovoltaics
19
作者 Jie Lv Xiaokang Sun +9 位作者 Hua Tang Fei Wang Guangye Zhang Liangxiang Zhu Jiaming Huang Qianguang Yang Shirong Lu Gang Li Frédéric Laquai Hanlin Hu 《InfoMat》 SCIE CSCD 2024年第3期131-143,共13页
Organic solar cells(OSCs)have emerged as a promising solution for sustainable energy production,offering advantages such as a low carbon footprint,short energy payback period,and compatibility with eco-solvents.Howeve... Organic solar cells(OSCs)have emerged as a promising solution for sustainable energy production,offering advantages such as a low carbon footprint,short energy payback period,and compatibility with eco-solvents.However,the use of hazardous solvents continues to dominate the best-performing OSCs,mainly because of the challenges of controlling phase separation and domain crystallinity in eco-solvents.In this study,we combined the solvent vapor treatment of CS2 and thermal annealing to precisely control the phase separation and domain crystallinity in PM6:M-Cl and PM6:O-Cl systems processed with the eco-solvent o-xylene.This method resulted in a maximum power conversion efficiency(PCE)of 18.4%,which is among the highest values reported for sustainable binary OSCs.Furthermore,the fabrication techniques were transferred from spin coating in a nitrogen environment to blade printing in ambient air,retaining a PCE of 16.0%,showing its potential for high-throughput and scalable production.In addition,a comparative analysis of OSCs processed with hazardous and green solvents was conducted to reveal the differences in phase aggregation.This work not only underscores the significance of sustainability in OSCs but also lays the groundwork for unlocking the full potential of open-air-printable sustainable OSCs for commercialization. 展开更多
关键词 open-air printable organic solar cells SUSTAINABILITY
原文传递
Tuning the electronic structure of the earth-abundant electrocatalysts for oxygen evolution reaction(OER)to achieve efficient alkaline water splitting-A review 被引量:4
20
作者 Mohammed-Ibrahim Jamesh Moussab Harb 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第5期299-342,共44页
Tuning the electronic structure of the electrocatalysts for oxygen evolution reaction(OER)is a promising way to achieve efficient alkaline water splitting for clean energy production(H2).At first,this paper introduces... Tuning the electronic structure of the electrocatalysts for oxygen evolution reaction(OER)is a promising way to achieve efficient alkaline water splitting for clean energy production(H2).At first,this paper introduces the significance of the tuning of electronic structure,where modifying the electronic structure of the electrocatalysts could generate active sites having optimal adsorption energy with OER intermediates,and that could diminish the energy barrier for OER,and that could improve the activity for OER.Later,this paper reviews the tuning of electronic structure along with catalytic performances,synthetic methodologies,chemical properties,and DFT calculations on various nanostructured earth-abundant electrocatalysts for OER in alkaline environment.Further,this review discusses the tuning of the electronic structure of the several nanostructured earth-abundant electrocatalysts including oxide,(oxy)hydroxide,layered double hydroxide,alloy,metal phosphide/phosphate,nitride,sulfide,selenide,carbon containing materials,MOF,core-shell/hetero/hollow structured materials,and materials with vacancies/defects for OER in alkaline environment(including activity:overpotential(η)of ≤200 mV at10 m A cm^(-2);stability:≥100 h;durability:≥5000 cycles).Then,this review discusses the robust stability of the electrocatalysts for OER towards practical application.Moreover,this review discusses the in situ formation of thin layer on the catalyst surface during OER.In addition,this review discusses the influence of the adsorption energy of the OER intermediates on OER performance of the catalysts.Finally,this review summarizes the various promising strategies for tuning the electronic structure of the electrocatalysts to achieve enhanced performance for OER in alkaline environment. 展开更多
关键词 OER electrocatalyst Electrochemical water splitting Earth abundant electrocatalyst Hydrogen energy
下载PDF
上一页 1 2 4 下一页 到第
使用帮助 返回顶部