Magnetic semiconductors have been demonstrated to work at low temperatures, but not yet at room temperature for spin electronic applications. In contrast to the p-type diluted magnetic semiconductors, n-type diluted m...Magnetic semiconductors have been demonstrated to work at low temperatures, but not yet at room temperature for spin electronic applications. In contrast to the p-type diluted magnetic semiconductors, n-type diluted magnetic semiconductors are few. Using a combined method of the density function theory and quantum Monte Carlo simulation, we briefly discuss the recent progress to obtain diluted magnetic semiconductors with both p- and n-type carriers by choosing host semiconductors with a narrow band gap. In addition, the recent progress on two-dimensional intrinsic magnetic semiconductors with possible room temperature ferromangetism and quantum anomalous Hall effect are also discussed.展开更多
Large and variable in-plane uniaxial magnetic anisotropy in a nanocrystalline (Co2FeA1)97.8(Al2O3)2.2 soft magnetic thin film is obtained by an oblique sputtering method without being induced by magnetic field or ...Large and variable in-plane uniaxial magnetic anisotropy in a nanocrystalline (Co2FeA1)97.8(Al2O3)2.2 soft magnetic thin film is obtained by an oblique sputtering method without being induced by magnetic field or post anneaiing. The in-plane uniaxiai magnetic anisotropy varies from 50 Oe to 180 Oe (1 Oe=79.5775 A·m-1) by adjusting the sample's position. As a result, the ferromagnetic resonance frequency of the film increases from 1.9 GHz to 3.75 GHz.展开更多
Ferric acetylacetonate/covalent organic framework(Fe(acac)_(3)/COF)composite was synthesized by interfacial polymerization method at room temperature.The crystal structure,morphology and porosity property of the compo...Ferric acetylacetonate/covalent organic framework(Fe(acac)_(3)/COF)composite was synthesized by interfacial polymerization method at room temperature.The crystal structure,morphology and porosity property of the composite were characterized by X-ray diffraction,scanning electron microscope,transmission electron microscope and nitrogen adsorption.The interaction between Fe(acac)_(3) and COF was investigated by Fourier transform infrared spectra and X-ray photoelectron spectroscopy.The Fe(acac)_(3)/COF composite was used as a photocatalyst for the oxidation of benzyl alcohol under mild conditions.It exhibits high activity and selectivity for the reaction,of which the mechanism was investigated by determining its photoelectric properties.The Fe(acac)_(3)/COF catalyst developed in this work has application potential in other photocatalytic reactions.展开更多
UiO-66-NH_(2),an important metal-organic framework,is usually synthesized by solvothermal method and the particle size is generally larger than 200 nm,which limits its catalytic applications in chemical reactions.It i...UiO-66-NH_(2),an important metal-organic framework,is usually synthesized by solvothermal method and the particle size is generally larger than 200 nm,which limits its catalytic applications in chemical reactions.It is very meaningful to produce UiO-66-NH_(2) nanoparticles with ultrasmall size,but remains challenging.Herein,we synthesized UiO-66-NH_(2) nanoparticles in size of 8-15 nm that are immobilized on g-C_(3)N_(4)nanosheets.Compared with the UiO-66-NH_(2) synthesized by the traditional solvothermal method(>200 nm),the ultra-small UiO-66-NH_(2) nanoparticles immobilized on g-C_(3)N_(4)have more unsaturated coordination positions and increased Lewis acidity.Owing to these combined advantages,the ultra-small UiO-66-NH_(2)nanoparticles exhibit greatly improved catalytic activity for Meerwein-Ponndorf-Verley reaction than larger UiO-66-NH_(2)particles.展开更多
The reaction of triplet fusion,also named triplet-triplet annihilation,has attracted a lot of research interests because of its wide applications in photocatalytic,solar cells,and bioimaging.As for the singlet oxygen ...The reaction of triplet fusion,also named triplet-triplet annihilation,has attracted a lot of research interests because of its wide applications in photocatalytic,solar cells,and bioimaging.As for the singlet oxygen photosensitization,the reactive singlet oxygen species are generated through the energy transfers from photosensitizer(PS)to ground triplet oxygen molecule.In this work,we computed the electronic coupling for singlet oxygen photosensitization using the nonadiabatic coupling from the quantum chemical calculation.Then we utilized the molecular orbital(MO)overlaps to approximate it,where the MOs were computed from isolated single molecules.As demonstrated with quantitative results,this approach well describes the distribution of the coupling strength as the function of the intermolecular distance between the sensitizer and O_(2),providing us a simple but effective way to predict the coupling of triplet fusion reactions.展开更多
Transition metal carbides have been shown to exhibit good catalytic performance that depends on their compositions and morphologies,and understanding such catalytic properties requires knowledge of their precise geome...Transition metal carbides have been shown to exhibit good catalytic performance that depends on their compositions and morphologies,and understanding such catalytic properties requires knowledge of their precise geometry,determination of which is challenging,particularly for clusters formed by multiple elements.In this study,we investigate the geometries and electronic structures of binary V_(n)C_(3)-(n=1-6)clusters and their neutrals using photoelectron spectroscopy and theoretical calculations based on density functional theory.The adiabatic detachment energies of V_(n)C_(3)-,or equally,the electron affinities of V_(n)C_(3),have been determined from the measured photoelectron spectra.Theoretical calculations reveal that the carbon atoms become separate when the number of V atoms increases in the clusters,i.e.,the C-C interactions present in small clusters are replaced by V-C and/or V-V interactions in larger ones.We further explore the composition dependent formation of cubic or cube-like structures in 8-atom VnCm(n+m=8)clusters.展开更多
The topological edge states of two-dimensional topological insulators with large energy gaps furnish ideal conduction channels for dissipationless current transport. Transition metal tellurides XTe5X=Zr, Hf) are theor...The topological edge states of two-dimensional topological insulators with large energy gaps furnish ideal conduction channels for dissipationless current transport. Transition metal tellurides XTe5X=Zr, Hf) are theoretically predicted to be large-gap two-dimensional topological insulators, and the experimental observations of their bulk insulating gap and in-gap edge states have been reported, but the topological nature of these edge states still remains to be further elucidated. Here, we report our low-temperature scanning tunneling microscopy/spectroscopy study on single crystals of HfTe5. We demonstrate a full energy gap of ~80 meV near the Fermi level on the surface monolayer of HfTe5 and that such an insulating energy gap gets filled with finite energy states when measured at the monolayer step edges. Remarkably, such states are absent at the edges of a narrow monolayer strip of one-unit-cell in width but persist at both step edges of a unit-cell wide monolayer groove. These experimental observations strongly indicate that the edge states of HfTe5 monolayers are not trivially caused by translational symmetry breaking, instead they are topological in nature protected by the 2 D nontrivial bulk properties.展开更多
Angle-resolved photoemission spectroscopy(ARPES)and torque magnetometry(TM)measurements have been carried out to study the electronic structures of a correlated topological insulator(TI)candidate Yb B6.We observed cle...Angle-resolved photoemission spectroscopy(ARPES)and torque magnetometry(TM)measurements have been carried out to study the electronic structures of a correlated topological insulator(TI)candidate Yb B6.We observed clear surface states on the[001]surface centered at theГ^- and М^- points of the surface Brillouin zone.Interestingly,the fermiology revealed by the quantum oscillation of TM measurements agrees excellently with ARPES measurements.Moreover,the band structures we observed suggest that the band inversion in Yb B6 happens between the Yb5 dand B2bands,instead of the Yb5dand Yb4fbands as suggested by previous theoretical investigation,which will help settle the heavy debate regarding the topological nature of samarium/ytterbium hexaborides.展开更多
C–Obond activation is a highly efficient,fundamental strategy in the depolymerization and hydrodeoxygenation of chemicals with oxygen-containing functional groups such as oil,coal,and biomass.Developing efficient cat...C–Obond activation is a highly efficient,fundamental strategy in the depolymerization and hydrodeoxygenation of chemicals with oxygen-containing functional groups such as oil,coal,and biomass.Developing efficient catalysts for C–Oactivation with ultralow-loading noble and non-noble metals is highly desirable for the improvement of metal atomic utilization.Herein,bimetallic catalysts with atomically dispersed Pt and NiO clusters on different supports were fabricated,and the prepared Pt^(δ+)-NiO/Nb_(2)O_(5)and Pt^(δ+)-NiO/TiO_(2)showed outstanding activity for the hydrogenolysis of benzyl phenyl ether with>99%yield of phenol and toluene due to the excellent cooperation of atomically dispersed Pt and NiO clusters.The synergy mechanism between Pt and Ni and their respective roles in the bimetallic catalyst for C–O hydrogenolysis were clearly clarified.These findings deepen our understanding of the synergy of the two active components and are expected to provide new design concepts for the development of multicomponents catalysts.展开更多
It is of great importance to develop facile strategies to synthesize catalysts with desirable compositions and structures for high-performance photocatalytic hydrogen generation. In this work, we put forward an ionic ...It is of great importance to develop facile strategies to synthesize catalysts with desirable compositions and structures for high-performance photocatalytic hydrogen generation. In this work, we put forward an ionic liquid assisted one-pot route for the synthesis of heteroatom-doped Pt/TiO2 composite material. This route is simple, environmentally benign and adjustable owing to the designable properties of ionic liquids. The as-synthesized Pt/TiO2 nanocrystals exhibit high activity and stability for the photocatalytic hydrogen generation under simulated solar irradiation. This method can be easily applied to the synthesis of various kinds of metal/TiO2 composites doped with desirable heteroatoms (e.g., F, Cl, Br, etc).展开更多
To construct the heterojunctions of TiO2 with other compounds is of great importance for overcoming its inherent shortages and improving the visible-light photocatalytic performance.Here we propose the construction of...To construct the heterojunctions of TiO2 with other compounds is of great importance for overcoming its inherent shortages and improving the visible-light photocatalytic performance.Here we propose the construction of TiO2/covalent organic framework(COF)heterojunction with tight connection by a supercritical CO2(SC CO2)method,which helps bridging the transformation paths for photo-induced charge between T i02 and COF.The produced T i02/COF heterojunction performs a H2 evolution of 3,962 nmol·g^-1·h^-1 under visible-light irradiation,which is-25 times higher than that of pure TiO2 and 4.5 folds higher than that of TiO2/COF synthesized by the conventional solvothermal method.This study opens up new possibilities for constructing heterojunctions for solar energy utilization.展开更多
The electroreduction of CO2 to valuable chemicals and fuels offers an effective mean for energy storage.Although CO2 has been efficiently converted into C1 products(e.g.,carbon monoxide,formic acid,methane and methano...The electroreduction of CO2 to valuable chemicals and fuels offers an effective mean for energy storage.Although CO2 has been efficiently converted into C1 products(e.g.,carbon monoxide,formic acid,methane and methanol),its convention into high value-added multicarbon hydrocarbons with high selectivity and activity still remains challenging.Here we demonstrate the formation of multi-shelled CuO microboxes for the efficient and selective electrocatalytic CO2 reduction to C2H4.Such a structure favors the accessibility of catalytically active sites,improves adsorption of reaction intermediate(CO),inhibits the diffusion of produced OH−and promotes C-C coupling reaction.Owing to these unique advantages,the multi-shelled CuO microboxes can effectively convert CO2 into C2H4 with a maximum faradaic efficiency of 51.3%in 0.1 M K2SO4.This work provides an effective way to improve CO2 reduction efficiency via constructing micro-and nanostructures of electrocatalysts.展开更多
Manganese-catalyzed hydrogenation of unsaturated molecules has made tremendous progresses recently benefiting from non-innocent pincer or bidentate ligands for manganese.Herein,we describe the hydrogenation of quinoli...Manganese-catalyzed hydrogenation of unsaturated molecules has made tremendous progresses recently benefiting from non-innocent pincer or bidentate ligands for manganese.Herein,we describe the hydrogenation of quinolines and imines catalyzed by simple manganese carbonyls,Mn2(CO)10 or MnBr(CO)5,thus eliminating the prerequisite pincer-type or bidentate ligands.展开更多
The recent discovery of an unconventional insulating phase and an adjacent superconducting (SC) phase in the twisted bilayer graphene (TBG)[1,2] has triggered great excitement (3–11)The two layers of graphene are rot...The recent discovery of an unconventional insulating phase and an adjacent superconducting (SC) phase in the twisted bilayer graphene (TBG)[1,2] has triggered great excitement (3–11)The two layers of graphene are rotated relatively by an angle θ.展开更多
Co_(3)Sn_(2)S_(2) is a recently identified magnetic Weyl semimetal in Shandite compounds. Upon cooling, Co_(3)Sn_(2)S_(2) undergoes a ferromagnetic transition with c-axis polarized moments(0.3 μ_(B)/Co) around T_(C)=...Co_(3)Sn_(2)S_(2) is a recently identified magnetic Weyl semimetal in Shandite compounds. Upon cooling, Co_(3)Sn_(2)S_(2) undergoes a ferromagnetic transition with c-axis polarized moments(0.3 μ_(B)/Co) around T_(C)= 175 K, followed by another magnetic anomaly around T_(A)≈ 140 K. A large intrinsic anomalous Hall effect is observed in the magnetic state below TC with a maximum of anomalous Hall angle near T_(A). Here, we report an elastic neutron scattering on the crystalline lattice of Co_(3)Sn_(2)S_(2) in a magnetic field up to 10 T. A strongly anisotropic magnetoelastic response is observed, while only a slight enhancement of the Bragg peaks is observed when B//c. The in-plane magnetic field(B//ab) dramatically suppresses the Bragg peak intensity probably by tilting the moments and lattice toward the external field direction. The in-plane magnetoelastic response commences from T_(C), and as it is further strengthened below T_(A), it becomes nonmonotonic against the field between T_(A) and T_(C) because of the competition from another in-plane magnetic order. These results suggest that a magnetic field can be employed to tune the Co_(3)Sn_(2)S_(2) lattice and its related topological states.展开更多
Developing simple and green routes to access valuable chemicals is of significance.Herein,we present a green and novel route to synthesize N,N-dimethyl arylmethylamines(DAMAs)from hexamethylenetetramine(HMTA)and aryl ...Developing simple and green routes to access valuable chemicals is of significance.Herein,we present a green and novel route to synthesize N,N-dimethyl arylmethylamines(DAMAs)from hexamethylenetetramine(HMTA)and aryl aldehydes in the presence of hydrogen,and a series of DAMAs can be obtained in good yields.This approach opens the precedent for HMTA as N,N-dimethylamine source to synthesize chemicals with N,N-dimethylamine group,which has promising applications for N-containing chemicals synthesis.展开更多
We report a comprehensive neutron scattering study on the spin excitations in the magnetic Weyl semimetal Co3Sn2S2 with a quasi-two-dimensional structure.Both in-plane and out-of-plane dispersions of the spin waves we...We report a comprehensive neutron scattering study on the spin excitations in the magnetic Weyl semimetal Co3Sn2S2 with a quasi-two-dimensional structure.Both in-plane and out-of-plane dispersions of the spin waves were revealed in the ferromagnetic state.Similarly,dispersive but damped spin excitations were found in the paramagnetic state.The effective exchange interactions were estimated using a semi-classical Heisenberg model to consistently reproduce the experimental TCand spin stiffness.However,a full spin wave gap below Eg=2.3 meV was observed at T=4 K.This value was considerably larger than the estimated magnetic anisotropy energy(~0.6 meV),and its temperature dependence indicated a significant contribution from the Weyl fermions.These results suggest that Co3Sn2S2 is a three-dimensional correlated system with a large spin stiffness,and the low-energy spin dynamics can interplay with the topological electron states.展开更多
Conventional reactive sites of ketones with aldehydes lie on the carbonyl andα-carbon positions,which lead to a wide range of classic reactions such as pinacol-coupling and aldol-type condensations.Herein,an unpreced...Conventional reactive sites of ketones with aldehydes lie on the carbonyl andα-carbon positions,which lead to a wide range of classic reactions such as pinacol-coupling and aldol-type condensations.Herein,an unprecedented reactive site of aromatic ketones toward aldehydes has been revealed by using earth-abundant manganese catalysis,which enabled the first deoxygenative[3+2]annulations of ketones and aldehydes through C–H activation affording isobenzofuran derivatives.Mechanistic studies give hints on the dual role of triphenylborane additive in the reaction,that is,promoting C–H activation as a transmetalation reagent and activating aldehydes as a Lewis acid.展开更多
Summary of main observation and conclusion Herein,unprecedented rhenium-catalyzed decarboxylative oxytri-/difluoromethylation and Heck-type trifluoromethylation of styrenes have been developed by using hypervalent iod...Summary of main observation and conclusion Herein,unprecedented rhenium-catalyzed decarboxylative oxytri-/difluoromethylation and Heck-type trifluoromethylation of styrenes have been developed by using hypervalent iodine(Ⅲ)reagents derived from cheap,stable,and easy-handling fluorinated carboxylic acids.Mechanistic studies revealed a radical decarboxylative trifluoromethylation pathway occurring in these reactions.展开更多
基金supported by NSFC (Grant No. Y81Z01A1A9)CAS (Grant No. Y929013EA2)+3 种基金UCAS (Grant No.110200M208)the Strategic Priority Research Program of CAS (Grant No. XDB28000000)the National Key R&D Program of China (Grant No.11834014)Beijing Municipal Science & Technology Commission (Grant No. Z181100004218001)
文摘Magnetic semiconductors have been demonstrated to work at low temperatures, but not yet at room temperature for spin electronic applications. In contrast to the p-type diluted magnetic semiconductors, n-type diluted magnetic semiconductors are few. Using a combined method of the density function theory and quantum Monte Carlo simulation, we briefly discuss the recent progress to obtain diluted magnetic semiconductors with both p- and n-type carriers by choosing host semiconductors with a narrow band gap. In addition, the recent progress on two-dimensional intrinsic magnetic semiconductors with possible room temperature ferromangetism and quantum anomalous Hall effect are also discussed.
基金Project supported by the National Natural Science Foundation of China(Grant No.11074040)the Key Project of Shandong Provincial Department of Science and Technology,China(Grant No.ZR2012FZ006)the Fujian Provincial Science Foundation for Distinguished Young Scholars,China(Grant No.2010J06001)
文摘Large and variable in-plane uniaxial magnetic anisotropy in a nanocrystalline (Co2FeA1)97.8(Al2O3)2.2 soft magnetic thin film is obtained by an oblique sputtering method without being induced by magnetic field or post anneaiing. The in-plane uniaxiai magnetic anisotropy varies from 50 Oe to 180 Oe (1 Oe=79.5775 A·m-1) by adjusting the sample's position. As a result, the ferromagnetic resonance frequency of the film increases from 1.9 GHz to 3.75 GHz.
基金financial supports from National Natural Science Foundation of China(21525316,21673254)Ministry of Science and Technology of China(2017YFA0403003)+1 种基金Chinese Academy of Sciences(QYZDYSSW-SLH013)Beijing Municipal Science&Technology Commission(Z191100007219009).
文摘Ferric acetylacetonate/covalent organic framework(Fe(acac)_(3)/COF)composite was synthesized by interfacial polymerization method at room temperature.The crystal structure,morphology and porosity property of the composite were characterized by X-ray diffraction,scanning electron microscope,transmission electron microscope and nitrogen adsorption.The interaction between Fe(acac)_(3) and COF was investigated by Fourier transform infrared spectra and X-ray photoelectron spectroscopy.The Fe(acac)_(3)/COF composite was used as a photocatalyst for the oxidation of benzyl alcohol under mild conditions.It exhibits high activity and selectivity for the reaction,of which the mechanism was investigated by determining its photoelectric properties.The Fe(acac)_(3)/COF catalyst developed in this work has application potential in other photocatalytic reactions.
基金financial supports from National Natural Science Foundation of China(21525316,21673254)Ministry of Science and Technology of China(2017YFA0403003)+1 种基金Chinese Academy of Sciences(QYZDYSSW-SLH013)Beijing Municipal Science&Technology Commission(Z191100007219009)。
文摘UiO-66-NH_(2),an important metal-organic framework,is usually synthesized by solvothermal method and the particle size is generally larger than 200 nm,which limits its catalytic applications in chemical reactions.It is very meaningful to produce UiO-66-NH_(2) nanoparticles with ultrasmall size,but remains challenging.Herein,we synthesized UiO-66-NH_(2) nanoparticles in size of 8-15 nm that are immobilized on g-C_(3)N_(4)nanosheets.Compared with the UiO-66-NH_(2) synthesized by the traditional solvothermal method(>200 nm),the ultra-small UiO-66-NH_(2) nanoparticles immobilized on g-C_(3)N_(4)have more unsaturated coordination positions and increased Lewis acidity.Owing to these combined advantages,the ultra-small UiO-66-NH_(2)nanoparticles exhibit greatly improved catalytic activity for Meerwein-Ponndorf-Verley reaction than larger UiO-66-NH_(2)particles.
基金the supports from the Chinese Academy of Sciences(CAS)Institute of Chemistry,CAS+3 种基金the supports from the National Natural Science Foundation of China(No.21933011)the Beijing Municipal Science&Technology Commission(No.Z191100007219009)the K.C.Wong Education Foundationthe support from the National Natural Science Foundation of China(No.21773073)。
文摘The reaction of triplet fusion,also named triplet-triplet annihilation,has attracted a lot of research interests because of its wide applications in photocatalytic,solar cells,and bioimaging.As for the singlet oxygen photosensitization,the reactive singlet oxygen species are generated through the energy transfers from photosensitizer(PS)to ground triplet oxygen molecule.In this work,we computed the electronic coupling for singlet oxygen photosensitization using the nonadiabatic coupling from the quantum chemical calculation.Then we utilized the molecular orbital(MO)overlaps to approximate it,where the MOs were computed from isolated single molecules.As demonstrated with quantitative results,this approach well describes the distribution of the coupling strength as the function of the intermolecular distance between the sensitizer and O_(2),providing us a simple but effective way to predict the coupling of triplet fusion reactions.
基金the Doctoral Start-up Funding of Zhengzhou University of Light Industry(No.2017BSJJ030)Henan Province Science Fund for Excellent Young Scholars(No.202300410494)+4 种基金the Beijing Municipal Science and Technology Commission(No.Z191100007219009)for supportsthe VSC(Flemish Supercomputer Center),funded by the Research Foundation-Flanders(FWO)the Flemish Government-department EWIthe support of Xi’an Jiaotong University via the“Young Talent Support Plan”the“Fundamental Research Funds for Central Universities”。
文摘Transition metal carbides have been shown to exhibit good catalytic performance that depends on their compositions and morphologies,and understanding such catalytic properties requires knowledge of their precise geometry,determination of which is challenging,particularly for clusters formed by multiple elements.In this study,we investigate the geometries and electronic structures of binary V_(n)C_(3)-(n=1-6)clusters and their neutrals using photoelectron spectroscopy and theoretical calculations based on density functional theory.The adiabatic detachment energies of V_(n)C_(3)-,or equally,the electron affinities of V_(n)C_(3),have been determined from the measured photoelectron spectra.Theoretical calculations reveal that the carbon atoms become separate when the number of V atoms increases in the clusters,i.e.,the C-C interactions present in small clusters are replaced by V-C and/or V-V interactions in larger ones.We further explore the composition dependent formation of cubic or cube-like structures in 8-atom VnCm(n+m=8)clusters.
基金Supported by the Chinese Academy of Sciencesthe National Natural Science Foundation of China under Grant No 11227903+4 种基金the BM-STC under Grant No Z181100004218007the National Basic Research Program of China under Grant Nos 2015CB921300and 2015CB921304National Key R&D Program of China under Grant No 2017YFA0302903the Strategic Priority Research Program B of the Chinese Academy of Sciences under Grant Nos XDB04040300 and XDB07000000Beijing Municipal Science&Technology Commission(Z181100004218007)
文摘The topological edge states of two-dimensional topological insulators with large energy gaps furnish ideal conduction channels for dissipationless current transport. Transition metal tellurides XTe5X=Zr, Hf) are theoretically predicted to be large-gap two-dimensional topological insulators, and the experimental observations of their bulk insulating gap and in-gap edge states have been reported, but the topological nature of these edge states still remains to be further elucidated. Here, we report our low-temperature scanning tunneling microscopy/spectroscopy study on single crystals of HfTe5. We demonstrate a full energy gap of ~80 meV near the Fermi level on the surface monolayer of HfTe5 and that such an insulating energy gap gets filled with finite energy states when measured at the monolayer step edges. Remarkably, such states are absent at the edges of a narrow monolayer strip of one-unit-cell in width but persist at both step edges of a unit-cell wide monolayer groove. These experimental observations strongly indicate that the edge states of HfTe5 monolayers are not trivially caused by translational symmetry breaking, instead they are topological in nature protected by the 2 D nontrivial bulk properties.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11774190, 11674229, 11634009, and 11774427)the National Key R&D Program of China (Grant Nos. 2017YFA0304600 and 2017YFA0305400)+5 种基金support from the EPSRC (UK) grant EP/K04074X/1 and a DARPA (US) MESO project (No. N66001-11-1-4105)supported by the Office of Naval Research through the National Science Foundation under Award No. DMR-1707620 (magnetization measurement)supported by the Office of Basic Energy Sciences of the U.S. Department of Energy (DE-AC0205CH11231)SIMES and SLAC National Accelerator Laboratory is supported by the Office of Basic Energy Sciences of the U.S. Department of Energy (DE-AC0276SF00515)Nanjing University is supported by the National Basic Research Program of China (Grant No. 51002074)the National Basic Research of China (Grant Nos. 2012CB921503 and 2012CB632702)
文摘Angle-resolved photoemission spectroscopy(ARPES)and torque magnetometry(TM)measurements have been carried out to study the electronic structures of a correlated topological insulator(TI)candidate Yb B6.We observed clear surface states on the[001]surface centered at theГ^- and М^- points of the surface Brillouin zone.Interestingly,the fermiology revealed by the quantum oscillation of TM measurements agrees excellently with ARPES measurements.Moreover,the band structures we observed suggest that the band inversion in Yb B6 happens between the Yb5 dand B2bands,instead of the Yb5dand Yb4fbands as suggested by previous theoretical investigation,which will help settle the heavy debate regarding the topological nature of samarium/ytterbium hexaborides.
基金supported by the National Key Research and Development Program of China(grant no.2022YFA1504901)the National Natural Science Foundation of China(grant nos.22003069,22293012,22179132,22072157,22121002,and 22302209).
文摘C–Obond activation is a highly efficient,fundamental strategy in the depolymerization and hydrodeoxygenation of chemicals with oxygen-containing functional groups such as oil,coal,and biomass.Developing efficient catalysts for C–Oactivation with ultralow-loading noble and non-noble metals is highly desirable for the improvement of metal atomic utilization.Herein,bimetallic catalysts with atomically dispersed Pt and NiO clusters on different supports were fabricated,and the prepared Pt^(δ+)-NiO/Nb_(2)O_(5)and Pt^(δ+)-NiO/TiO_(2)showed outstanding activity for the hydrogenolysis of benzyl phenyl ether with>99%yield of phenol and toluene due to the excellent cooperation of atomically dispersed Pt and NiO clusters.The synergy mechanism between Pt and Ni and their respective roles in the bimetallic catalyst for C–O hydrogenolysis were clearly clarified.These findings deepen our understanding of the synergy of the two active components and are expected to provide new design concepts for the development of multicomponents catalysts.
基金the National Natural Science Foundation of China (Nos.21525316 and 21673254)Ministry of Science and Technology of China (No.2017YFA0403003)+1 种基金Chinese Academy of Sciences (No.QYZDY-SSW-SLH013)Beijing Municipal Science & Technology Commission (No.Z181100004218004).
文摘It is of great importance to develop facile strategies to synthesize catalysts with desirable compositions and structures for high-performance photocatalytic hydrogen generation. In this work, we put forward an ionic liquid assisted one-pot route for the synthesis of heteroatom-doped Pt/TiO2 composite material. This route is simple, environmentally benign and adjustable owing to the designable properties of ionic liquids. The as-synthesized Pt/TiO2 nanocrystals exhibit high activity and stability for the photocatalytic hydrogen generation under simulated solar irradiation. This method can be easily applied to the synthesis of various kinds of metal/TiO2 composites doped with desirable heteroatoms (e.g., F, Cl, Br, etc).
基金The authors thank the financial supports from M inistry of Science and Technology of China(No.2017YFA0403003)the National Natural Science Foundation of China(Nos.21525316 and 21673254)+1 种基金Chinese Academy of Sciences(No.QYZDYSSW-SLH013)Beijing Municipal Science&Technology Commission(No.Z191100007219009).
文摘To construct the heterojunctions of TiO2 with other compounds is of great importance for overcoming its inherent shortages and improving the visible-light photocatalytic performance.Here we propose the construction of TiO2/covalent organic framework(COF)heterojunction with tight connection by a supercritical CO2(SC CO2)method,which helps bridging the transformation paths for photo-induced charge between T i02 and COF.The produced T i02/COF heterojunction performs a H2 evolution of 3,962 nmol·g^-1·h^-1 under visible-light irradiation,which is-25 times higher than that of pure TiO2 and 4.5 folds higher than that of TiO2/COF synthesized by the conventional solvothermal method.This study opens up new possibilities for constructing heterojunctions for solar energy utilization.
基金supports from Ministry of Science and Technology of China(No.2017YFA0403003)the National Natural Science Foundation of China(Nos.21525316 and 21673254)+1 种基金Chinese Academy of Sciences(No.QYZDY-SSW-SLH013)Beijing Municipal Science&Technology Commission(No.Z191100007219009).
文摘The electroreduction of CO2 to valuable chemicals and fuels offers an effective mean for energy storage.Although CO2 has been efficiently converted into C1 products(e.g.,carbon monoxide,formic acid,methane and methanol),its convention into high value-added multicarbon hydrocarbons with high selectivity and activity still remains challenging.Here we demonstrate the formation of multi-shelled CuO microboxes for the efficient and selective electrocatalytic CO2 reduction to C2H4.Such a structure favors the accessibility of catalytically active sites,improves adsorption of reaction intermediate(CO),inhibits the diffusion of produced OH−and promotes C-C coupling reaction.Owing to these unique advantages,the multi-shelled CuO microboxes can effectively convert CO2 into C2H4 with a maximum faradaic efficiency of 51.3%in 0.1 M K2SO4.This work provides an effective way to improve CO2 reduction efficiency via constructing micro-and nanostructures of electrocatalysts.
基金the National Natural Science Foundation of China(No.21772202,21831008)Beijing Municipal Science&Technology Commission(No.Z191100007219009)Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXXM201901)。
文摘Manganese-catalyzed hydrogenation of unsaturated molecules has made tremendous progresses recently benefiting from non-innocent pincer or bidentate ligands for manganese.Herein,we describe the hydrogenation of quinolines and imines catalyzed by simple manganese carbonyls,Mn2(CO)10 or MnBr(CO)5,thus eliminating the prerequisite pincer-type or bidentate ligands.
基金supported by the National Key R&D Program of China (2018YFA0305800)National Natural Science Foundation of China (11804337)+1 种基金Strategic Priority Research Program of CAS (XDB28000000)Beijing Municipal Science & Technology Commission (Z181100004218001)
文摘The recent discovery of an unconventional insulating phase and an adjacent superconducting (SC) phase in the twisted bilayer graphene (TBG)[1,2] has triggered great excitement (3–11)The two layers of graphene are rotated relatively by an angle θ.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0303100,2017YFA0302900,2016YFA0300500,and 2017YFA0206300)the National Natural Science Foundation of China(Grant Nos.11974392,11974394,11822411,51722106,11674372,11774399,11961160699,and 12061130200)+2 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant Nos.XDB07020300,XDB25000000,and XDB33000000)the Beijing Natural Science Foundation(Grant Nos.JQ19002,Z180008,and Z190009)the support from the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant Nos.2013002,and 2016004)。
文摘Co_(3)Sn_(2)S_(2) is a recently identified magnetic Weyl semimetal in Shandite compounds. Upon cooling, Co_(3)Sn_(2)S_(2) undergoes a ferromagnetic transition with c-axis polarized moments(0.3 μ_(B)/Co) around T_(C)= 175 K, followed by another magnetic anomaly around T_(A)≈ 140 K. A large intrinsic anomalous Hall effect is observed in the magnetic state below TC with a maximum of anomalous Hall angle near T_(A). Here, we report an elastic neutron scattering on the crystalline lattice of Co_(3)Sn_(2)S_(2) in a magnetic field up to 10 T. A strongly anisotropic magnetoelastic response is observed, while only a slight enhancement of the Bragg peaks is observed when B//c. The in-plane magnetic field(B//ab) dramatically suppresses the Bragg peak intensity probably by tilting the moments and lattice toward the external field direction. The in-plane magnetoelastic response commences from T_(C), and as it is further strengthened below T_(A), it becomes nonmonotonic against the field between T_(A) and T_(C) because of the competition from another in-plane magnetic order. These results suggest that a magnetic field can be employed to tune the Co_(3)Sn_(2)S_(2) lattice and its related topological states.
基金This work was financially supported by the Beijing Municipal Science&Technology Commission(No.Z191100007219009)Chinese Academy of Sciences(Grant No.QYZDY-SSW-SLH013).
文摘Developing simple and green routes to access valuable chemicals is of significance.Herein,we present a green and novel route to synthesize N,N-dimethyl arylmethylamines(DAMAs)from hexamethylenetetramine(HMTA)and aryl aldehydes in the presence of hydrogen,and a series of DAMAs can be obtained in good yields.This approach opens the precedent for HMTA as N,N-dimethylamine source to synthesize chemicals with N,N-dimethylamine group,which has promising applications for N-containing chemicals synthesis.
基金supported by the National Key Research and Development Program of China(Grant Nos.2017YFA0303100,2017YFA0302900,2016YFA0300500,2017YFA0206300,and 2019YFA0704900)the National Natural Science Foundation of China(Grant Nos.11974392,11974394,11822411,51722106,11674372,11774399,11961160699,and 12061130200)+3 种基金the Strategic Priority Research Program(B)of the Chinese Academy of Sciences(CAS)(Grant Nos.XDB07020300,XDB25000000,and XDB33000000)the Beijing Natural Science Foundation(Grant Nos.JQ19002,Z180008,and Z190009)support from the Youth Innovation Promotion Association of CAS(Grant Nos.2013002,and 2016004)support from the K.C.Wong Education Foundation(GJTD-2018-01)。
文摘We report a comprehensive neutron scattering study on the spin excitations in the magnetic Weyl semimetal Co3Sn2S2 with a quasi-two-dimensional structure.Both in-plane and out-of-plane dispersions of the spin waves were revealed in the ferromagnetic state.Similarly,dispersive but damped spin excitations were found in the paramagnetic state.The effective exchange interactions were estimated using a semi-classical Heisenberg model to consistently reproduce the experimental TCand spin stiffness.However,a full spin wave gap below Eg=2.3 meV was observed at T=4 K.This value was considerably larger than the estimated magnetic anisotropy energy(~0.6 meV),and its temperature dependence indicated a significant contribution from the Weyl fermions.These results suggest that Co3Sn2S2 is a three-dimensional correlated system with a large spin stiffness,and the low-energy spin dynamics can interplay with the topological electron states.
基金support from the National Natural Science Foundation of China(21772202,21831008)Beijing Municipal Science&Technology Commission(project No.Z191100007219009)Beijing National Laboratory for Molecular Sciences(BNLMS-CXXM-201901)are gratefully acknowledged.
文摘Conventional reactive sites of ketones with aldehydes lie on the carbonyl andα-carbon positions,which lead to a wide range of classic reactions such as pinacol-coupling and aldol-type condensations.Herein,an unprecedented reactive site of aromatic ketones toward aldehydes has been revealed by using earth-abundant manganese catalysis,which enabled the first deoxygenative[3+2]annulations of ketones and aldehydes through C–H activation affording isobenzofuran derivatives.Mechanistic studies give hints on the dual role of triphenylborane additive in the reaction,that is,promoting C–H activation as a transmetalation reagent and activating aldehydes as a Lewis acid.
基金We gratefully acknowledge the financial support from the National Natural Science Foundation of China(Nos.21772202,21701073,21831008)Beijing Municipal Science&Technology Commission(No.Z181100004218004)+1 种基金Beijing National Laboratory for Molecular Sciences(No.BNLMS-CXXM-201901)the Fundamental Research Funds for the Central Universities(lzujbky-2017-12 and lzujbky-2019-kb06).
文摘Summary of main observation and conclusion Herein,unprecedented rhenium-catalyzed decarboxylative oxytri-/difluoromethylation and Heck-type trifluoromethylation of styrenes have been developed by using hypervalent iodine(Ⅲ)reagents derived from cheap,stable,and easy-handling fluorinated carboxylic acids.Mechanistic studies revealed a radical decarboxylative trifluoromethylation pathway occurring in these reactions.