期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Chemical Durability, Properties and Structural Approach of the Glass Series xFe2O3-(45-x) PbO-55P2O5 (with 0 ≤ x ≤ 20;mol%)
1
作者 Radouane Makhlouk Zineb Chabbou +2 位作者 Yassine Er-rouissi M’hammed Taibi Said Aqdim 《New Journal of Glass and Ceramics》 CAS 2023年第1期1-16,共16页
The synthesis for glasses series xFe<sub>2</sub>O<sub>3</sub>-(45-x)PbO-55P<sub>2</sub>O<sub>5</sub>, (with 0 ≤ x ≤ 20;mol%) carried out in a temperature (1050 ± ... The synthesis for glasses series xFe<sub>2</sub>O<sub>3</sub>-(45-x)PbO-55P<sub>2</sub>O<sub>5</sub>, (with 0 ≤ x ≤ 20;mol%) carried out in a temperature (1050 ± 10)°C, leads to obtaining transparent glasses, brown in color and with a non-hygroscopic appearance. The study of glasses dissolution rate, immersed in distilled water at 90°C for 24 days, indicates a considerable chemical durability. The increase in the Fe<sub>2</sub>O<sub>3</sub> content in the vitreous network to the detriment of PbO is a favorable factor for the chemical durability improvement. Different techniques have been used such as X-ray diffraction, infrared spectroscopy, DSC, SEM and density for the study of these glasses. These techniques have led to establish correlations between chemical and structural properties. Thus the results obtained confirmed the creation of P-O-M bonds (M = Pb, Fe) with a strongly covalent nature to the detriment of the hydrated P-O-P bonds and led to the formation, mainly, of pyrophosphate groups. The low melting point of Pb-O makes it possible to play an important role, at the same time, on the viscosity, on the equilibrium between the vitreous bath and the crystallites formed. The dissolution rate obtained is 100 times smaller than that of silicate glasses used as an alternative form for the vitrification of radioactive waste. 展开更多
关键词 Phosphate Glasses Lead Iron Density IR DRX MEB Durabilité Chimique VITRIFICATION Nuclear Wastes
下载PDF
Relationship between Chemical Durability, Structure and the Ionic-Covalent Character of Me-O-P Bond (Me = Cr, Fe), in the Vitreous Part of the System 60P<sub>2</sub>O<sub>5</sub>-2Cr<sub>2</sub>O<sub>3</sub>-(38 - x) Na<sub>2</sub>O-xFe<sub>2</sub>O<sub>3</sub>(with 3 ≤ x ≤ 33 mol%) 被引量:1
2
作者 Nadia Beloued Radouane Makhlouk +3 位作者 Yassine Er-Rouissi M’hammed Taibi Mohammed Sajieddine Said Aqdim 《Advances in Materials Physics and Chemistry》 2019年第10期199-209,共11页
The structure and chemical durability in the vitreous part of the system 60P2O5-2Cr2O3-xFe2O3-(38 - x)Na2O phosphate glasses (with 3 ≤ x ≤ 33 mol%) were investigated using various techniques such as IR spectroscopy,... The structure and chemical durability in the vitreous part of the system 60P2O5-2Cr2O3-xFe2O3-(38 - x)Na2O phosphate glasses (with 3 ≤ x ≤ 33 mol%) were investigated using various techniques such as IR spectroscopy, X-ray diffraction and M?ssbauer spectroscopy. The presence of Cr2O3 and the increase of Fe2O3 at the expense of Na2O in the glass network lead to a large number of covalent and rigid Fe-O-P and Cr-O-P bonds. The infrared and XRD spectra indicate a radical change of structure and show that the increase of the Fe2O3 content favors the depolymerization of the vitreous network towards pyrophosphate chains. The presence of Cr2O3 in the glass seems to favor the covalent Cr-O-P bonds linked to the most probable cyclic metaphosphate chains. However, when the Fe2O3 content increases (≥23 mol%), its impact on the glass network is stronger than that of Cr2O3. The infrared and XRD spectra indicate a radical change of structure and show that the increase in Fe2O3 content favors the depolymerization of the vitreous network to short pyrophosphate chains. The results of M?ssbauer spectroscopy indicate the presence of both Fe (III) and Fe (II) ions which occupied more or less deformed octahedral sites. The growth of the glass transition temperature (Tg) with the increase of the iron oxide in the vitreous network, leads to an improvement of the glass rigidity. This explains the decrease of the ionic radius of the iron and the reinforcement of the interconnection of the chains of vitreous networks. The structure of sodium-chromium-iron phosphate glasses can be considered largely as pyrophosphate units linked to ferric and ferrous ions in octahedral or deformed octahedral coordination. The dissolution rate is 200 times lower than that of the silicate glasses. 展开更多
关键词 CHEMICAL Durability Phosphate Glasses Chromium and Iron Oxides IR XRD Nuclear and CHEMICAL Wastes
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部