The thermal and electrical transport properties of an ideal anyon gas within fractional exclusion statistics are studied. By solving the Boltzmann equation with the relaxation-time approximation, the analytical expres...The thermal and electrical transport properties of an ideal anyon gas within fractional exclusion statistics are studied. By solving the Boltzmann equation with the relaxation-time approximation, the analytical expressions for the thermal and electrical conductivities of a three-dimensional ideal anyon gas are given. The low-temperature expressions for the two conductivities are obtained by using the Sommerfeld expansion. It is found that the Wiedemann–Franz law should be modified by the higher-order temperature terms, which depend on the statistical parameter g for a charged anyon gas. Neglecting the higher-order terms of temperature, the Wiedemann–Franz law is respected, which gives the Lorenz number. The Lorenz number is a function of the statistical parameter g.展开更多
The finite-temperature Pauli paramagnetic susceptibility of a three-dimensional ideal anyon gas obeying Haldane fractional exclusion statistics is studied analytically.Different from the result of an ideal Fermi gas,t...The finite-temperature Pauli paramagnetic susceptibility of a three-dimensional ideal anyon gas obeying Haldane fractional exclusion statistics is studied analytically.Different from the result of an ideal Fermi gas,the susceptibility of an ideal anyon gas depends on a statistical factor g in Haldane statistics model.The low-temperature and high-temperature behaviors of the susceptibility are investigated in detail.The Pauli paramagnetic susceptibility of the two-dimensional ideal anyons is also derived.It is found that the reciprocal of the susceptibility has the similar factorizable property which is exhibited in some thermodynamic quantities in two dimensions.展开更多
基金Supported by the Excellent Doctorial Dissertation Cultivation Grant from Central China Normal University under Grant No.2013YBYB44the Guidance Project of Education Department of Hubei Province under Grant No.B2014024+2 种基金the Scientific and Technological Research Program of Education Department of Hubei Province under Grant Nos.Q20123004 and Q20134401the Greative Teamof Hubei Polytechnic University under Grant No.13xtz05the National Natural Science Foundation of China under Grant Nos.11105039,11275082,11178001,and 51302074
文摘The thermal and electrical transport properties of an ideal anyon gas within fractional exclusion statistics are studied. By solving the Boltzmann equation with the relaxation-time approximation, the analytical expressions for the thermal and electrical conductivities of a three-dimensional ideal anyon gas are given. The low-temperature expressions for the two conductivities are obtained by using the Sommerfeld expansion. It is found that the Wiedemann–Franz law should be modified by the higher-order temperature terms, which depend on the statistical parameter g for a charged anyon gas. Neglecting the higher-order terms of temperature, the Wiedemann–Franz law is respected, which gives the Lorenz number. The Lorenz number is a function of the statistical parameter g.
基金Supported by the National Natural Science Foundation of China under Grant Nos. 11275082 and 11178001
文摘The finite-temperature Pauli paramagnetic susceptibility of a three-dimensional ideal anyon gas obeying Haldane fractional exclusion statistics is studied analytically.Different from the result of an ideal Fermi gas,the susceptibility of an ideal anyon gas depends on a statistical factor g in Haldane statistics model.The low-temperature and high-temperature behaviors of the susceptibility are investigated in detail.The Pauli paramagnetic susceptibility of the two-dimensional ideal anyons is also derived.It is found that the reciprocal of the susceptibility has the similar factorizable property which is exhibited in some thermodynamic quantities in two dimensions.