The electronic and lattice structures of poly (phenylene vinylene) (PPV) are studied theoretically. Both the electron-electron and electron-phonon interactions are taken into account in the Pariser-Parr-Pople model. T...The electronic and lattice structures of poly (phenylene vinylene) (PPV) are studied theoretically. Both the electron-electron and electron-phonon interactions are taken into account in the Pariser-Parr-Pople model. The electronic band and the lattice structure of the ground state and the polaronic state are calculated by means of the unrestricted Hartree-Fock method. In the ground state, there exist eight bands in PPV including four valence bands and four conduction bands, and the benzenes can be considered to be rigid. The polaron induces the split of energy bands. There are four localized electronic states within the energy gap. The defect of the polaron appears to extend over about 5 units. The benzenes are strongly affected by the electron-phonon interaction. Our calculation for the energy band structure of the ground and polaron states are consistent with experimental absorption spectra. The results of our calculation show that the electron-phonon and inter-site electron-electron interactions play an important role in determining the electronic and lattice structures.展开更多
文摘The electronic and lattice structures of poly (phenylene vinylene) (PPV) are studied theoretically. Both the electron-electron and electron-phonon interactions are taken into account in the Pariser-Parr-Pople model. The electronic band and the lattice structure of the ground state and the polaronic state are calculated by means of the unrestricted Hartree-Fock method. In the ground state, there exist eight bands in PPV including four valence bands and four conduction bands, and the benzenes can be considered to be rigid. The polaron induces the split of energy bands. There are four localized electronic states within the energy gap. The defect of the polaron appears to extend over about 5 units. The benzenes are strongly affected by the electron-phonon interaction. Our calculation for the energy band structure of the ground and polaron states are consistent with experimental absorption spectra. The results of our calculation show that the electron-phonon and inter-site electron-electron interactions play an important role in determining the electronic and lattice structures.