Corrugated silicon nanocone(SiNC)arrays have been fabricated on a silicon wafer by two polystyrene-sphere-monolayer-masked etching steps in order to create high-performance antireflective coatings.The reflectance was ...Corrugated silicon nanocone(SiNC)arrays have been fabricated on a silicon wafer by two polystyrene-sphere-monolayer-masked etching steps in order to create high-performance antireflective coatings.The reflectance was reduced from above 35%to less than 0.7%in the range 400-1050 nm,and it remained below 0.5%at incidence angles up to 70°at 632.8 nm for both s-and p-polarized light.The fluorinated corrugated SiNC array surface exhibits superhydrophobic properties with a water contact angle of 164°.展开更多
Close-packed Ag pyramidal arrays have been fabricated by using inverted pyramidal pits on Si as a template and used to generate plentiful and homogeneous surface-enhanced Raman scattering (SERS) hot sites. The sharp...Close-packed Ag pyramidal arrays have been fabricated by using inverted pyramidal pits on Si as a template and used to generate plentiful and homogeneous surface-enhanced Raman scattering (SERS) hot sites. The sharp nanotip and the four edges of the Ag pyramid result in strong electromagnetic field enhancement with an average enhancement factor (EF) of 2.84 × 10^7. Moreover, the features of the close-packed Ag pyramidal array can be well controlled, which allows SERS substrates with good reproducibility to be obtained. The relative standard deviation (RSD) was lower than 8.78% both across a single substrate and different batches of substrates.展开更多
The traditional single material with two-dimensional (2D) biomimetic moth-eye structures is limited by its narrowband antireflection and single functional capability. To overcome these disadvantages, we exploited we...The traditional single material with two-dimensional (2D) biomimetic moth-eye structures is limited by its narrowband antireflection and single functional capability. To overcome these disadvantages, we exploited wet etching and hydrothermal synthesis coupled with chemical oxidation for fabricating a three- dimensional (3D) biomimetic moth-eye coating with ternary materials (polypyrrole nanoparticles, TiO2 nanorods, and Si micropyramids, i.e., PPy/TiOa/Si-p). This coating reduced the reflectivity to 〈4% at wavelengths ranging from 200 to 2,300 nm and exhibited remarkable superhydrophilidty with a low water contact angle of 1.8°. Moreover, the composite coating had double p-n heterojunctions, allowing the high-efficiency separation of photogenerated carriers. The photo- current density of PPy/TiO2/Si-p was more than three times higher than that of TiO2/Si-p at a positive potential of 1.5 V. The proposed method provides a means to enhance solar energy conversion.展开更多
It is a great challenge to spontaneously assemble achiral molecules into twisted nanostructures in the absence of chiral substances.Here we show that two achiral centrosymmetric quinacridone(QA)derivatives,N,N’-di(n-...It is a great challenge to spontaneously assemble achiral molecules into twisted nanostructures in the absence of chiral substances.Here we show that two achiral centrosymmetric quinacridone(QA)derivatives,N,N’-di(n-hexyl)-1,3,8,10-tetramethylquinacridone(C6TMQA)and N,N’-di(n-decyl)-1,3,8,10-tetramethylquinac ridone(C10TMQA),can be employed as building blocks to fabricate well-defi ned twisted nanostructures by controlling the solvent composition and concentration.Bowknot-like bundles with twisted fiber arms were prepared from C6TMQA,whilst uniform twisted fibers were generated from C10TMQA in ethanol/THF solution.Spectroscopic characterization and molecular simulation calculations revealed that the introduction of ethanol into the solution could induce a staggered aggregation of C6TMQA(or C10TMQA)molecules and the formation of twisted nanostructures.Such twisted materials generated from achiral organic functional molecules may be valuable in the design and fabrication of new materials for optoelectronic applications.展开更多
基金This work was supported by the National Natural Science Foundation of China(No.20373019)the Program for New Century Excellent Talents in University,and the National Basic Research Program(Nos.2007CB808003 and 2009CB939701).
文摘Corrugated silicon nanocone(SiNC)arrays have been fabricated on a silicon wafer by two polystyrene-sphere-monolayer-masked etching steps in order to create high-performance antireflective coatings.The reflectance was reduced from above 35%to less than 0.7%in the range 400-1050 nm,and it remained below 0.5%at incidence angles up to 70°at 632.8 nm for both s-and p-polarized light.The fluorinated corrugated SiNC array surface exhibits superhydrophobic properties with a water contact angle of 164°.
文摘Close-packed Ag pyramidal arrays have been fabricated by using inverted pyramidal pits on Si as a template and used to generate plentiful and homogeneous surface-enhanced Raman scattering (SERS) hot sites. The sharp nanotip and the four edges of the Ag pyramid result in strong electromagnetic field enhancement with an average enhancement factor (EF) of 2.84 × 10^7. Moreover, the features of the close-packed Ag pyramidal array can be well controlled, which allows SERS substrates with good reproducibility to be obtained. The relative standard deviation (RSD) was lower than 8.78% both across a single substrate and different batches of substrates.
基金This work was supported by the National Natural Science Foundation of China (Nos. 21401079, 21501069, and 21671081), Fundamental Research Funds for the Central Universities (No. JUSRP51626B), and Natural Science Foundation of Jiangsu Province (Nos. BK20140158 and BK20161128).
文摘The traditional single material with two-dimensional (2D) biomimetic moth-eye structures is limited by its narrowband antireflection and single functional capability. To overcome these disadvantages, we exploited wet etching and hydrothermal synthesis coupled with chemical oxidation for fabricating a three- dimensional (3D) biomimetic moth-eye coating with ternary materials (polypyrrole nanoparticles, TiO2 nanorods, and Si micropyramids, i.e., PPy/TiOa/Si-p). This coating reduced the reflectivity to 〈4% at wavelengths ranging from 200 to 2,300 nm and exhibited remarkable superhydrophilidty with a low water contact angle of 1.8°. Moreover, the composite coating had double p-n heterojunctions, allowing the high-efficiency separation of photogenerated carriers. The photo- current density of PPy/TiO2/Si-p was more than three times higher than that of TiO2/Si-p at a positive potential of 1.5 V. The proposed method provides a means to enhance solar energy conversion.
基金the financial support from the National Natural Science Foundation of China(51821002)the Collaborative Innovation Center of Suzhou Nano Science&Technology+2 种基金the Deutsche Forschungsgemeinschaft(SFB 858 projects B3,the German-Chinese Transregional Collaborative Research Centre TRR 61/PAK 943)the Europ?ischer Fonds für regionale Entwicklung(EFRE)innovation laboratory for high performance materials(JLU)the National Key Research and Development Program of China(2018YFE0200700)。
基金by the National Natural Science Foundation of China(50733002 and 50773027)the Major State Basic Research Development Program(2009CB939700)and 111 Project(B06009).
文摘It is a great challenge to spontaneously assemble achiral molecules into twisted nanostructures in the absence of chiral substances.Here we show that two achiral centrosymmetric quinacridone(QA)derivatives,N,N’-di(n-hexyl)-1,3,8,10-tetramethylquinacridone(C6TMQA)and N,N’-di(n-decyl)-1,3,8,10-tetramethylquinac ridone(C10TMQA),can be employed as building blocks to fabricate well-defi ned twisted nanostructures by controlling the solvent composition and concentration.Bowknot-like bundles with twisted fiber arms were prepared from C6TMQA,whilst uniform twisted fibers were generated from C10TMQA in ethanol/THF solution.Spectroscopic characterization and molecular simulation calculations revealed that the introduction of ethanol into the solution could induce a staggered aggregation of C6TMQA(or C10TMQA)molecules and the formation of twisted nanostructures.Such twisted materials generated from achiral organic functional molecules may be valuable in the design and fabrication of new materials for optoelectronic applications.