Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer.However,the potential application of bacterial therapy is hindered by the presence of instability an...Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer.However,the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations.Furthermore,monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors.In this study,based on our discovery that spore shell(SS)of Bacillus coagulans exhibits excellent tumor-targeting ability and adjuvant activity,we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy,chemodynamic therapy and antitumor immunity for synergistic cancer treatment.In detail,SS is separated from probiotic spores and then attached to the surface of liposome(Lipo)that was loaded with hemoglobin(Hb),glucose oxidase(GOx)and JQ1to construct SS@Lipo/Hb/GOx/JQ1.In tumor tissue,highly toxic hydroxyl radicals(·OH)are generated via sequential catalytic reactions:GOx catalyzing glucose into H_(2)O_(2)and Fe^(2+)in Hb decomposing H_(2)O_(2)into·OH.The combination of·OH and SS adjuvant can improve tumor immunogenicity and activate immune system.Meanwhile,JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response.In this manner,SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis.To summarize,the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy.展开更多
基金supported by the National Natural Science Foundation of China(No.82272847,82202318,82304417,82303529)The Henan Province Fund for Cultivating Advantageous Disciplines(No.222301420012)+2 种基金Central Plains science and technology innovation leading talent project(No.234200510005)The project tackling of key scientific and technical problems of Henan Provine(No.232102311163)China Postdoctoral Science Foundation(2022TQ0310,2023TQ0307,2023M730971)。
文摘Bacterial-based antitumor immunity has become a promising strategy to activate the immune system for fighting cancer.However,the potential application of bacterial therapy is hindered by the presence of instability and susceptibility to infections within bacterial populations.Furthermore,monotherapy is ineffective in completely eliminating complex cancer with multiple contributing factors.In this study,based on our discovery that spore shell(SS)of Bacillus coagulans exhibits excellent tumor-targeting ability and adjuvant activity,we develop a biomimetic spore nanoplatform to boost bacteria-mediated antitumor therapy,chemodynamic therapy and antitumor immunity for synergistic cancer treatment.In detail,SS is separated from probiotic spores and then attached to the surface of liposome(Lipo)that was loaded with hemoglobin(Hb),glucose oxidase(GOx)and JQ1to construct SS@Lipo/Hb/GOx/JQ1.In tumor tissue,highly toxic hydroxyl radicals(·OH)are generated via sequential catalytic reactions:GOx catalyzing glucose into H_(2)O_(2)and Fe^(2+)in Hb decomposing H_(2)O_(2)into·OH.The combination of·OH and SS adjuvant can improve tumor immunogenicity and activate immune system.Meanwhile,JQ1-mediated down-regulation of PD-L1 and Hb-induced hypoxia alleviation synergistically reshape immunosuppressive tumor microenvironment and potentiate immune response.In this manner,SS@Lipo/Hb/GOx/JQ1 significantly suppresses tumor growth and metastasis.To summarize,the nanoplatform represents an optimum strategy to potentiate bacteria-based cancer immunotherapy.