Horseweed is traditionally considered a non-cropland weed. However, populations resistant to glyphosate have eventually become established in no-till agronomic cropping systems. Growth chamber and greenhouse experimen...Horseweed is traditionally considered a non-cropland weed. However, populations resistant to glyphosate have eventually become established in no-till agronomic cropping systems. Growth chamber and greenhouse experiments were conducted to compare selected biological and physiological parameters of glyphosate-resistant (GR) and -susceptible (GS) horseweed biotypes from Mississippi with a broader goal of fitness characterization in these biotypes. Vegetative growth parameters (number of leaves, rosette diameter and area, shoot and root fresh weights) were recorded weekly from 5 to 11 wk after emergence and reproductive attributes [days to bolting (production of a flowering stalk) and flowering] and senescence were measured for both GR and GS biotypes under high (24°C/20°C) and low (18°C/12°C) temperature regimes, both with a 13-h light period. Physiological traits such as net photosynthesis, phenolic content, and cell membrane thermostability, all in the presence and absence of glyphosate, and leaf content of divalent cations such as Ca2+ and Mg2+ were assayed in the two biotypes under the high temperature regime. All horseweed vegetative growth parameters except root fresh weight were higher in the high temperature regime compared to that in low temperature regime in both biotypes. Number of leaves, rosette diameter and area, shoot and root fresh weight were 40 vs. 35, 9.3 vs. 8.7 cm, 51 vs. 43 cm2, 3.7 vs. 3.2 g, and 3.5 vs. 4.2 g under high and low temperature conditions, respectively, when averaged across biotypes and weekly measurements. All growth parameters listed above were higher for the GR biotype compared to the GS biotype. Number of leaves, rosette diameter and area, shoot and root fresh weight were 38 vs. 37, 9.1 vs. 8.9 cm, 50.2 vs. 44 cm2, 3.9 vs. 3.1 g, and 4.3 vs. 3.5 g for GR and GS biotypes, respectively, averaged across the temperature treatments and weekly measurements. Reproductive developmental data of these biotypes indicated that the GS biotype bolted earlier than the GR biotype. The GS biotype had more phenolic content and exhibited higher cell membrane thermostability, but less net photosynthetic rate compared to the GR biotype. At 48 h after treatment with glyphosate, there was no change in phenolic content of both GR and GS biotypes. However, glyphosate reduced cell membrane thermostability and net photosynthetic rate more in the GS biotype than that in the GR biotype. Chemical analysis of GR and GS leaf tissue did not reveal any differences in levels of divalent cations such as Ca2+ and Mg2+. Further studies are needed to determine if some of the differences between the two biotypes observed above relate to fitness variation in a natural environment.展开更多
The wall of an expanding plant cell consists primarily of cellulose microfibrils embedded in a matrix of hemicellulosic and pectic polysaccharides along with small amounts of structural and enzymatic proteins. Matrix ...The wall of an expanding plant cell consists primarily of cellulose microfibrils embedded in a matrix of hemicellulosic and pectic polysaccharides along with small amounts of structural and enzymatic proteins. Matrix polysaccharides are synthesized in the Golgi and exported to the cell wall by exocytosis, where they intercalate among cellulose microfibrils, which are made at the plasma membrane and directly deposited into the cell wall. Involvement of Golgi glucan synthesis in auxin-induced cell expansion has long been recognized; however, only recently have the genes corresponding to glucan synthases been identified. Biochemical purification was unsuccessful because of the labile nature and very low abundance of these enzymes. Mutational genetics also proved fruitless. Expression of candidate genes identified through gene expression profiling or comparative genomics in heterologous systems followed by functional characterization has been relatively successful. Several genes from the cellulose synthase-like (Csl) family have been found to be involved in the synthesis of various hemicellulosic glycans. The usefulness of this approach, however, is limited to those enzymes that probably do not form complexes consisting of unrelated proteins. Nonconventional approaches will continue to incrementally unravel the mechanisms of Golgi polysaccharide biosynthesis.展开更多
As demands to maintain the global food production continue to mount,multinational seed companies are turning to new DNA marker technologies to accelerate the rate of plant breeding and crop improvement.The key to wide...As demands to maintain the global food production continue to mount,multinational seed companies are turning to new DNA marker technologies to accelerate the rate of plant breeding and crop improvement.The key to widespread adoption of molecular breeding is the availability of flexible and cost-effective tools that can perform combinatorial and high-throughput genotyping of single-nucleotide polymorphisms(SNPs)to guide the crop development process.Toward this end,we have developed a programmable,droplet-based microfluidic device for genotyping maize genomic DNA.A unique feature of the microfluidic platform is the nano sample processors(NSPs),which allow the device to sequentially load an unrestricted number of unique DNA samples using only two inlets,overcoming the current limitation to the number of sample inputs due to small device footprint.Direct and programmable droplet generation within the device allows each sample to be genotyped against a panel of markers on demand.Moreover,we have successfully implemented the Invader assay for SNP genotyping in flowing,50-nL droplets,thus achieving significant reduction in consumption of reagents per reaction as compared with conventional genotyping platforms.As a demonstration,we performed 240 Invader reactions(testing 8 DNA samples against 10 SNP markers)and achieved greater than 93% accuracy in SNP calling of plant DNA samples in a single droplet-based experiment.展开更多
Sorghum (Sorghum bicolor) has high levels of starch, sugar, and fiber and is one of the most important energy crops in the world. Insect damage is one of the challenges that impacts sorghum biomass production. There...Sorghum (Sorghum bicolor) has high levels of starch, sugar, and fiber and is one of the most important energy crops in the world. Insect damage is one of the challenges that impacts sorghum biomass production. There are at least 150 insect species that can infest sorghum varieties worldwide. These insects can complete several generations within a growing season, they target various parts of sorghum plants at devel- opmental stages, and they cause significant biomass losses. Genetic research has revealed the existence of resistant genetics in sorghum and insect tolerant sorghum varieties have been identified. Various control methods have been developed, yet more effective management is needed for increasing sorghum biomass production. Although there are no transgenic sorghum products on the market yet, biotechnology has been recognized as an important tool for controlling insect pests and increasing sorghum production.展开更多
文摘Horseweed is traditionally considered a non-cropland weed. However, populations resistant to glyphosate have eventually become established in no-till agronomic cropping systems. Growth chamber and greenhouse experiments were conducted to compare selected biological and physiological parameters of glyphosate-resistant (GR) and -susceptible (GS) horseweed biotypes from Mississippi with a broader goal of fitness characterization in these biotypes. Vegetative growth parameters (number of leaves, rosette diameter and area, shoot and root fresh weights) were recorded weekly from 5 to 11 wk after emergence and reproductive attributes [days to bolting (production of a flowering stalk) and flowering] and senescence were measured for both GR and GS biotypes under high (24°C/20°C) and low (18°C/12°C) temperature regimes, both with a 13-h light period. Physiological traits such as net photosynthesis, phenolic content, and cell membrane thermostability, all in the presence and absence of glyphosate, and leaf content of divalent cations such as Ca2+ and Mg2+ were assayed in the two biotypes under the high temperature regime. All horseweed vegetative growth parameters except root fresh weight were higher in the high temperature regime compared to that in low temperature regime in both biotypes. Number of leaves, rosette diameter and area, shoot and root fresh weight were 40 vs. 35, 9.3 vs. 8.7 cm, 51 vs. 43 cm2, 3.7 vs. 3.2 g, and 3.5 vs. 4.2 g under high and low temperature conditions, respectively, when averaged across biotypes and weekly measurements. All growth parameters listed above were higher for the GR biotype compared to the GS biotype. Number of leaves, rosette diameter and area, shoot and root fresh weight were 38 vs. 37, 9.1 vs. 8.9 cm, 50.2 vs. 44 cm2, 3.9 vs. 3.1 g, and 4.3 vs. 3.5 g for GR and GS biotypes, respectively, averaged across the temperature treatments and weekly measurements. Reproductive developmental data of these biotypes indicated that the GS biotype bolted earlier than the GR biotype. The GS biotype had more phenolic content and exhibited higher cell membrane thermostability, but less net photosynthetic rate compared to the GR biotype. At 48 h after treatment with glyphosate, there was no change in phenolic content of both GR and GS biotypes. However, glyphosate reduced cell membrane thermostability and net photosynthetic rate more in the GS biotype than that in the GR biotype. Chemical analysis of GR and GS leaf tissue did not reveal any differences in levels of divalent cations such as Ca2+ and Mg2+. Further studies are needed to determine if some of the differences between the two biotypes observed above relate to fitness variation in a natural environment.
文摘The wall of an expanding plant cell consists primarily of cellulose microfibrils embedded in a matrix of hemicellulosic and pectic polysaccharides along with small amounts of structural and enzymatic proteins. Matrix polysaccharides are synthesized in the Golgi and exported to the cell wall by exocytosis, where they intercalate among cellulose microfibrils, which are made at the plasma membrane and directly deposited into the cell wall. Involvement of Golgi glucan synthesis in auxin-induced cell expansion has long been recognized; however, only recently have the genes corresponding to glucan synthases been identified. Biochemical purification was unsuccessful because of the labile nature and very low abundance of these enzymes. Mutational genetics also proved fruitless. Expression of candidate genes identified through gene expression profiling or comparative genomics in heterologous systems followed by functional characterization has been relatively successful. Several genes from the cellulose synthase-like (Csl) family have been found to be involved in the synthesis of various hemicellulosic glycans. The usefulness of this approach, however, is limited to those enzymes that probably do not form complexes consisting of unrelated proteins. Nonconventional approaches will continue to incrementally unravel the mechanisms of Golgi polysaccharide biosynthesis.
基金We thank the funding support from Dupont Pioneer and NSF(Grant No.1538813).
文摘As demands to maintain the global food production continue to mount,multinational seed companies are turning to new DNA marker technologies to accelerate the rate of plant breeding and crop improvement.The key to widespread adoption of molecular breeding is the availability of flexible and cost-effective tools that can perform combinatorial and high-throughput genotyping of single-nucleotide polymorphisms(SNPs)to guide the crop development process.Toward this end,we have developed a programmable,droplet-based microfluidic device for genotyping maize genomic DNA.A unique feature of the microfluidic platform is the nano sample processors(NSPs),which allow the device to sequentially load an unrestricted number of unique DNA samples using only two inlets,overcoming the current limitation to the number of sample inputs due to small device footprint.Direct and programmable droplet generation within the device allows each sample to be genotyped against a panel of markers on demand.Moreover,we have successfully implemented the Invader assay for SNP genotyping in flowing,50-nL droplets,thus achieving significant reduction in consumption of reagents per reaction as compared with conventional genotyping platforms.As a demonstration,we performed 240 Invader reactions(testing 8 DNA samples against 10 SNP markers)and achieved greater than 93% accuracy in SNP calling of plant DNA samples in a single droplet-based experiment.
基金supported by Pioneer Hi-Bred International Inc.,A DuPont Company
文摘Sorghum (Sorghum bicolor) has high levels of starch, sugar, and fiber and is one of the most important energy crops in the world. Insect damage is one of the challenges that impacts sorghum biomass production. There are at least 150 insect species that can infest sorghum varieties worldwide. These insects can complete several generations within a growing season, they target various parts of sorghum plants at devel- opmental stages, and they cause significant biomass losses. Genetic research has revealed the existence of resistant genetics in sorghum and insect tolerant sorghum varieties have been identified. Various control methods have been developed, yet more effective management is needed for increasing sorghum biomass production. Although there are no transgenic sorghum products on the market yet, biotechnology has been recognized as an important tool for controlling insect pests and increasing sorghum production.