Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil env...Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.展开更多
An integrated dynamic model of natural gas pipeline networks is developed in this paper.Components for gas supply,e.g.,pipelines,junctions,compressor stations,LNG terminals,regulation stations and gas storage faciliti...An integrated dynamic model of natural gas pipeline networks is developed in this paper.Components for gas supply,e.g.,pipelines,junctions,compressor stations,LNG terminals,regulation stations and gas storage facilities are included in the model.These components are firstly modeled with respect to their properties and functions and,then,integrated at the system level by Graph Theory.The model can be used for simulating the system response in different scenarios of operation,and evaluate the consequences from the perspectives of supply security and resilience.A case study is considered to evaluate the accuracy of the model by benchmarking its results against those from literature and the software Pipeline Studio.Finally,the model is applied on a relatively complex natural gas pipeline network and the results are analyzed in detail from the supply security and resilience points of view.The main contributions of the paper are:firstly,a novel model of a complex gas pipeline network is proposed as a dynamic state-space model at system level;a method,based on the dynamic model,is proposed to analyze the security and resilience of supply from a system perspective.展开更多
基金supported by the National Science Foundation of China(Grant numbers 52274062)Natural Science Foundation of Liaoning Province(Grant numbers 2022-MS-362)。
文摘Magnetic field and microorganisms are important factors influencing the stress corrosion cracking(SCC)of buried oil and gas pipelines. Once SCC occurs in buried pipelines, it will cause serious hazards to the soil environment. The SCC behavior of X80 pipeline steel under the magnetic field and sulfate-reducing bacteria(SRB) environment was investigated by immersion tests, electrochemical tests, and slow strain rate tensile(SSRT) tests. The results showed that the corrosion and SCC sensitivity of X80 steel decreased with increasing the magnetic field strength in the sterile environment. The SCC sensitivity was higher in the biotic environment inoculated with SRB, but it also decreased with increasing magnetic field strength, which was due to the magnetic field reduces microbial activity and promotes the formation of dense film layer. This work provided theoretical guidance on the prevention of SCC in pipeline steel under magnetic field and SRB coexistence.
基金supported by National Natural Science Foundation of China[grant number 51904316]provided by China University of Petroleum,Beijing[grant number2462021YJRC013,2462020YXZZ045]
文摘An integrated dynamic model of natural gas pipeline networks is developed in this paper.Components for gas supply,e.g.,pipelines,junctions,compressor stations,LNG terminals,regulation stations and gas storage facilities are included in the model.These components are firstly modeled with respect to their properties and functions and,then,integrated at the system level by Graph Theory.The model can be used for simulating the system response in different scenarios of operation,and evaluate the consequences from the perspectives of supply security and resilience.A case study is considered to evaluate the accuracy of the model by benchmarking its results against those from literature and the software Pipeline Studio.Finally,the model is applied on a relatively complex natural gas pipeline network and the results are analyzed in detail from the supply security and resilience points of view.The main contributions of the paper are:firstly,a novel model of a complex gas pipeline network is proposed as a dynamic state-space model at system level;a method,based on the dynamic model,is proposed to analyze the security and resilience of supply from a system perspective.