期刊文献+
共找到255篇文章
< 1 2 13 >
每页显示 20 50 100
Surface activation of viscose textiles via air,argon,and oxygen dielectric barrier discharge plasma:influence of peak voltage
1
作者 Shrouk ELASHRY Usama M.RASHED +2 位作者 Mostafa A.WAHBA Hend M.AHMED Nabil M.ELSIRAGY 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第7期134-147,共14页
This paper discusses the use of atmospheric pressure dielectric barrier discharge(DBD)plasma treatment to enhance the surface qualities of viscose fabrics.The study explores the effects of different plasma gases,disch... This paper discusses the use of atmospheric pressure dielectric barrier discharge(DBD)plasma treatment to enhance the surface qualities of viscose fabrics.The study explores the effects of different plasma gases,discharge voltages,and exposure times on the treated fabrics.The findings emphasize the importance of optimizing the plasma's peak voltage to achieve the desired surface treatment outcomes.The document also presents data on colour strength,wettability,colour fastness,and tensile strength of the treated fabrics,as well as scanning electron microscopy(SEM)analysis of surface morphology and chemical analysis using fouriertransition infrared spectroscopy(FTIR)and energy dispersive X-ray(EDX).The results show that treatment at a peak voltage of 11.83 k V is more efficient,except for the tensile strength which is enhanced at a peak voltage of 8.92 k V.The oxygen plasma treatment significantly improves the colour strength,which exhibits an increase from 11 to 18.The intensified colour was attributed to the significant influence of electrostatic interactions between the charged hydroxyl groups of the oxygen plasma treated viscose textiles and the dye molecules,which enhance the printability.The oxygen DBD plasma exhibits a higher ability to enhance the properties of textiles when compared to air and argon plasmas.This study presents a sustainable,economical,secure,and ecologically friendly approach to explore new fabrics for specific uses. 展开更多
关键词 Lissajous diagrams PRINTABILITY WETTABILITY tensile strength SEM EDX FTIR
下载PDF
Nonlinear mixing-based terahertz emission in inclined rippled density plasmas
2
作者 K Gopal A P Singh S Divya 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第6期384-390,共7页
We propose to investigate the THz field generation using nonlinear mixing mechanism of laser beat wave with inclined rippled density plasmas.Two laser pulses with frequencies(ω_(1),ω_(2)) and wave vectors(k_(1),k_(2... We propose to investigate the THz field generation using nonlinear mixing mechanism of laser beat wave with inclined rippled density plasmas.Two laser pulses with frequencies(ω_(1),ω_(2)) and wave vectors(k_(1),k_(2)) co-propagate and resultant laser beat wave forms at beat frequency(ω_(1)-ω_(2)).Laser beat wave imparts a nonlinear force on the ambient electrons and pushes them outward with nonlinear velocity v_(NL).Coupling of induced density perturbation and nonlinear velocity v_(NL)generates nonlinear currents at laser beat frequency that further generates electromagnetic field E_((ω_(1)-ω_(2))) in terahertz(THz)range.In the present scheme,density ripples are introduced at an angle with respect to laser propagation and flat Gaussian index(f) is introduced in laser field profile that transform curved top of Gaussian field envelope into flat top field envelope.The combined effect of flat laser pulses with inclined density ripples in plasmas shows 10-fold enhancement in THz field amplitude when flat-Gaussian index(f) varies from 1 to 4.Also,the THz field intensifies when density ripples inclination increases upto a certain angle and then decreases. 展开更多
关键词 TERAHERTZ inclined ripple flat laser laser plasma interaction
下载PDF
Investigation of the interaction between NS-DBD plasma-induced vortexes and separated flow over a swept wing
3
作者 刘备 梁华 郑博睿 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第1期88-99,共12页
The effect of nanosecond pulsed dielectric barrier discharge(NS-DBD) plasma flow separation control is closely related to the actuation frequency,because it involves the interaction between plasma-induced vortexes and... The effect of nanosecond pulsed dielectric barrier discharge(NS-DBD) plasma flow separation control is closely related to the actuation frequency,because it involves the interaction between plasma-induced vortexes and separated flow.In order to study the mechanism of NS-DBD plasma flow separation control over a swept wing,especially the influence of the actuation frequency,at first,experimental studies of the actuation frequencies at 100 Hz are conducted to validate the numerical simulation method.Then,numerical studies of different actuation frequencies which are 50 Hz,100 Hz,160 Hz,200 Hz,500 Hz,and 1000 Hz,respectively are conducted.The interaction between the plasma-induced vortexes and the separated flow is analyzed.Results show that there is a range of the actuation frequency which includes the frequency(160 Hz) calculated by the average aerodynamic chord length to make the control effect good,but when the actuation frequencies are too low(50 Hz) or too high(1000 Hz),the control effect will get worse.The former is because plasmainduced vortexes disappear in a period within an actuation cycle;the latter is because plasma-induced vortexes cannot develop completely,resulting in a weak vortex intensity. 展开更多
关键词 plasma-induced vortex flow separation control NS-DBD LES
下载PDF
Experimental investigation on de-icing by an array of impact rod-type plasma synthetic jets
4
作者 刘雪城 梁华 +2 位作者 宗豪华 谢理科 苏志 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期138-149,共12页
Since flight accidents due to aircraft icing occur from time to time,this paper proposes an array of impact rod-type plasma synthetic jet de-icing methods for aircraft icing problems.The impact rod-type plasma synthet... Since flight accidents due to aircraft icing occur from time to time,this paper proposes an array of impact rod-type plasma synthetic jet de-icing methods for aircraft icing problems.The impact rod-type plasma synthetic jet actuator(PSJA)is based on the traditional PSJA with an additional impact rod structure for better de-icing in the flight environment.In this work,we first optimize the ice-breaking performance of a single-impact rod-type PSJA,and then conduct an array of impact rod-type plasma synthetic jet ice-breaking experiments to investigate the relationship between crack expansion and discharge energy,ice thickness and group spacing.The results show that the impact force and impulse of a single-impact rod-type PSJA are proportional to the discharge energy,and there exists a threshold energy Qmin for a single actuator to break the ice,which is proportional to the ice thickness.Only when the discharge energy reaches above Qmin can the ice layer produce cracks,and at the same time,the maximum radial crack length produced during the ice-breaking process is proportional to the discharge energy.When the ice is broken by an array of impact rod PSJAs,the discharge energy and group spacing together determine whether the crack can be extended to the middle region of the actuator.When the group spacing is certain,increasing the energy can increase the intersection of cracks in the middle region,and the ice-fragmentation degree is increased and the ice-breaking effect is better.At the same time,the energy estimation method of ice breaking by an array of impact rod-type PSJAs is proposed according to the law when a single actuator is breaking ice. 展开更多
关键词 plasma de-icing plasma synthesis jet force measurement high-speed photography ice cracks
下载PDF
Ultraintense few-cycle infrared laser generation by fast-extending plasma grating
5
作者 Zhaoli Li Yanlei Zuo +5 位作者 Xiaoming Zeng Zhaohui Wu Xiaodong Wang Xiao Wang Jie Mu Bilong Hu 《Matter and Radiation at Extremes》 SCIE EI CAS CSCD 2023年第1期1-7,共7页
Ultraintense short-period infrared laser pulses play an important role in frontier scientific research,but their power is quite low when generated using current technology.This paper demonstrates a scheme for generati... Ultraintense short-period infrared laser pulses play an important role in frontier scientific research,but their power is quite low when generated using current technology.This paper demonstrates a scheme for generating an ultraintense few-cycle infrared pulse by directly compressing a long infrared pulse.In this scheme,an infrared picosecond-to-nanosecond laser pulse counterpropagates with a rapidly extending plasma grating that is created by ionizing an undulated gas by a short laser pulse,and the infrared laser pulse is reflected by the rapidly extending plasma grating.Because of the high expansion velocity of the latter,the infrared laser pulse is compressed in the reflection process.One-and two-dimensional particle-in-cell simulations show that by this method,a pulse with a duration of tens of picoseconds in the mid-to far-infrared range can be compressed to a few cycles with an efficiency exceeding 60%,thereby making ultraintense few-cycle infrared pulses possible. 展开更多
关键词 INTENSE CYCLE scheme
下载PDF
Experimental and numerical investigation of a self-supplementing dual-cavity plasma synthetic jet actuator
6
作者 郑博睿 张倩 +2 位作者 赵太飞 宋国正 陈全龙 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第2期172-178,共7页
The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is desig... The primary issue regarding the plasma synthetic jet actuator(PSJA)is its performance attenuation at high frequencies.To solve this issue,a self-supplementing,dual-cavity,plasma synthetic jet actuator(SD-PSJA)is designed,and the static properties of the SD-PSJA are investigated through experiments and numerical simulations.The pressure measurement shows that the SD-PSJA has two saturation frequencies(1200 Hz and 2100 Hz),and the experimental results show that both the saturation frequencies decrease as the volume of the bottom cavity of the SD-PSJA increases.As the size of the supplement hole increases,the first saturation frequency increases continuously,while the second saturation frequency shows a trend of first decreasing and then increasing.Numerical simulations show that the working process of the SD-PSJA is similar to that of the PSJA,but the volume of the cavity in the SD-PSJA is smaller than that of the PSJA;the SD-PSJA can supplement air to the top cavity through two holes,thus reducing the refresh time and effectively improving the jet intensity of the actuator at high frequencies. 展开更多
关键词 plasma flow control plasma synthetic jet actuator pressure measurements numerical simulations
下载PDF
Intense low-noise terahertz generation by relativistic laser irradiating near-critical-density plasma
7
作者 张世杰 周维民 +4 位作者 银燕 邹德滨 赵娜 谢端 卓红斌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期363-369,共7页
Low-noise terahertz(THz)radiation over 100 MV/cm generation by a linearly-polarized relativistic laser pulse interacting with a near-critical-density(NCD)plasma slab is studied by theory and particle-in-cell(PIC)simul... Low-noise terahertz(THz)radiation over 100 MV/cm generation by a linearly-polarized relativistic laser pulse interacting with a near-critical-density(NCD)plasma slab is studied by theory and particle-in-cell(PIC)simulations.A theoretical model is established to examine the dipole-like radiation emission.The THz radiation is attributed to the singlecycle low-frequency surface current,which is longitudinally constrained by the quasi-equilibrium established by the laser ponderomotive force and the ponderomotively induced electrostatic force.Through theoretical analysis,the spatiotemporal characteristics,polarization property of the THz radiation,and the relation between the radiation strength with the initial parameters of driving laser and plasma are obtained,which are in good consistence with the PIC simulation results.Furthermore,it is found by PIC simulations that the generation of thermal electrons can be suppressed within the appropriate parameter regime,resulting in a clear THz radiation waveform.The appropriate parameter region is given for generating a low-noise intense THz radiation with peak strength reaching 100 MV/cm,which could find potential applications in nonlinear THz physics. 展开更多
关键词 intense terahertz radiation relativistic laser–plasma interactions particle-in-cell simulation
下载PDF
Coated boron layers by boronization and a real-time boron coating using an impurity powder dropper in the LHD
8
作者 Naoko ASHIKAWA Robert LUNSFORD +4 位作者 Federico NESPOLI Erik GILSON Yaowei YU Jiansheng HU Shinichiro KADO 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第8期25-31,共7页
In the Large Helical Device(LHD),diborane(B2H6)is used as a standard boron source for boronization,which is assisted by helium glow discharges.In 2019,a new Impurity Powder Dropper(IPD)system was installed and is unde... In the Large Helical Device(LHD),diborane(B2H6)is used as a standard boron source for boronization,which is assisted by helium glow discharges.In 2019,a new Impurity Powder Dropper(IPD)system was installed and is under evaluation as a real-time wall conditioning technique.In the LHD,which is a large-sized heliotron device,an additional helium(He)glow discharge cleaning(GDC)after boronization was operated for a reduction in hydrogen recycling from the coated boron layers.This operational time of 3 h was determined by spectroscopic data during glow discharges.A flat hydrogen profile is obtained on the top surface of the coated boron on the specimen exposed to boronization.The results suggest a reduction in hydrogen at the top surface by He-GDC.Trapped oxygen in coated boron was obtained by boronization,and the coated boron,which has boron-oxide,on the first wall by B-IPD was also shown.Considering the difference in coating areas between B2H6 boronization and B-IPD operation,it would be most effective to use the IPD and B2H6 boronization coating together for optimized wall conditioning. 展开更多
关键词 boron layer oxygen impurity hydrogen recycling impurity powder dropper LHD EAST
下载PDF
Optimized online filter stack spectrometer for ultrashort X-ray pulses
9
作者 Jia-Xing Wen Ge Ma +17 位作者 Ming-Hai Yu Yu-Chi Wu Yong-Hong Yan Shao-Yi Wang Huai-Zhong Gao Lu-Shan Wang Yu-Gang Zhou Qiang Li Yue Yang Fang Tan Xiao-Hui Zhang Jie Zhang Wen-Bo Mo Jing-Qin Su Wei-Min Zhou Yu-Qiu Gu Ming Zeng Zong-Qing Zhao 《Nuclear Science and Techniques》 SCIE EI CAS CSCD 2024年第5期85-98,共14页
Currently,with the advent of high-repetition-rate laser-plasma experiments,the demand for online diagnosis for the X-ray spectrum is increasing because the laser-plasma-generated X-ray spectrum is very important for c... Currently,with the advent of high-repetition-rate laser-plasma experiments,the demand for online diagnosis for the X-ray spectrum is increasing because the laser-plasma-generated X-ray spectrum is very important for characterizing electron dynamics and applications.In this study,scintillators and silicon PIN(P-type–intrinsic-N-type semiconductor)diodes were used to construct a wideband online filter stack spectrometer.The X-ray sensor and filter arrangement was optimized using a genetic algorithm to minimize the condition number of the response matrix.Consequently,the unfolding error was significantly reduced based on numerical experiments.The detector responses were quantitatively calibrated by irradiating the scintillator and PIN diode with various nuclides and comparing the measuredγ-ray peaks.A prototype 15-channel spectrometer was developed by integrating an X-ray detector with front-and back-end electronics.The prototype spectrometer could record X-ray pulse signals at a repetition rate of 1 kHz.Furthermore,an optimized spectrometer was employed to record the real-time spectra of laser-driven bremsstrahlung sources.This optimized spectrometer offers a compact solution for spectrum diagnostics of ultrashort X-ray pulses,exhibiting improved accuracy in terms of spectrum measurements and repetition rates,and could be widely used in next-generation high-repetition-rate high-power laser facilities. 展开更多
关键词 Filter stack spectrometer Laser plasma diagnostics X-ray diagnostics Scintillator PIN diode
下载PDF
Diagnosis of indirectly driven double shell targets with point-projection hard x-ray radiography
10
作者 Chao Tian Minghai Yu +17 位作者 Lianqiang Shan Fengjuan Wu Bi Bi Qiangqiang Zhang Yuchi Wu Tiankui Zhang Feng Zhang Dongxiao Liu Weiwu Wang Zongqiang Yuan Siqian Yang Lei Yang Zhigang Deng Jian Teng Weimin Zhou Zongqing Zhao Yuqiu Gu Baohan Zhang 《Matter and Radiation at Extremes》 SCIE EI CSCD 2024年第2期50-62,共13页
We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on t... We present an application of short-pulse laser-generated hard x rays for the diagnosis of indirectly driven double shell targets. Coneinserted double shell targets were imploded through an indirect drive approach on the upgraded SG-II laser facility. Then, based on thepoint-projection hard x-ray radiography technique, time-resolved radiography of the double shell targets, including that of their near-peakcompression, were obtained. The backlighter source was created by the interactions of a high-intensity short pulsed laser with a metalmicrowire target. Images of the target near peak compression were obtained with an Au microwire. In addition, radiation hydrodynamicsimulations were performed, and the target evolution obtained agrees well with the experimental results. Using the radiographic images, arealdensities of the targets were evaluated. 展开更多
关键词 double PROJECTION POINT
下载PDF
Electromagnetic pulses produced by a picosecond laser interacting with solid targets
11
作者 牛爱慧 康宁 +5 位作者 许国潇 谢佳节 滕建 刘会亚 孙明营 李廷帅 《Chinese Physics B》 SCIE EI CAS CSCD 2024年第5期430-436,共7页
A high-power laser ablating solid targets induces giant electromagnetic pulses(EMPs),which are intimately pertinent to laser parameters,such as energy and pulse width.In this study,we reveal the features of EMPs gener... A high-power laser ablating solid targets induces giant electromagnetic pulses(EMPs),which are intimately pertinent to laser parameters,such as energy and pulse width.In this study,we reveal the features of EMPs generated from a picosecond(ps)laser irradiating solid targets at the SG-Ⅱpicosecond petawatt(PSPW)laser facility.The laser energy and pulse,as well as target material and thickness,show determinative effects on the EMPs’amplitude.More intense EMPs are detected behind targets compared to those at the other three positions,and the EMP amplitude decreases from 90.09 kV/m to 17.8 kV/m with the gold target thickness increasing from 10μm to 20μm,which is suppressed when the laser pulse width is enlarged.The results are expected to provide more insight into EMPs produced by ps lasers coupling with targets and lay the foundation for an effective EMP shielding design in high-power laser infrastructures. 展开更多
关键词 LASER electromagnetic pulse TARGET PROTON
下载PDF
Spatial and temporal evolution of electromagnetic pulses from solid target irradiated with multi-hundred-terawatt laser pulse inside target chamber
12
作者 何强友 邓志刚 +12 位作者 张智猛 夏亚东 张博 孟令彪 贺书凯 黄华 杨雷 刘红杰 范伟 林晨 周维民 李廷帅 颜学庆 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期62-69,共8页
Giant electromagnetic pulses(EMPs) induced by high-power laser irradiating solid targets interfere with various experimental diagnoses and even damage equipment,so unveiling the evolution of EMPs inside the laser cham... Giant electromagnetic pulses(EMPs) induced by high-power laser irradiating solid targets interfere with various experimental diagnoses and even damage equipment,so unveiling the evolution of EMPs inside the laser chamber is crucial for designing effective EMP shielding.In this work,the transmission characteristics of EMPs as a function of distances from the target chamber center(TCC) are studied using B-dot probes.The mean EMP amplitude generated by picosecond laser-target interaction reaches 561 kV m^(-1),357 kV m^(-1),395 kV m^(-1),and 341 kV m^(-1)at 0.32 m,0.53 m,0.76 m,and 1 m from TCC,which decreases dramatically from 0.32 m to 0.53 m.However,it shows a fluctuation from 0.53 m to 1 m.The temporal features of EMPs indicate that time-domain EMP signals near the target chamber wall have a wider full width at half maximum compared to that close to TCC,mainly due to the echo oscillation of electromagnetic waves inside the target chamber based on simulation and experimentation.The conclusions of this study will provide a new approach to mitigate strong electromagnetic pulses by decreasing the echo oscillation of electromagnetic waves inside the target chamber during laser coupling with targets. 展开更多
关键词 TARGET electromagnetic pulses spatial distribution
下载PDF
Experimental Characterization of the Plasma Synthetic Jet Actuator 被引量:12
13
作者 金迪 李应红 +4 位作者 贾敏 宋慧敏 崔巍 孙权 李凡玉 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第10期1034-1040,共7页
The plasma synthetic jet is a novel active flow control method because of advantages such as fast response, high frequency and non-moving parts, and it has received more attention recently, especially regarding its ap... The plasma synthetic jet is a novel active flow control method because of advantages such as fast response, high frequency and non-moving parts, and it has received more attention recently, especially regarding its application to high-speed flow control. In this paper, the experimental characterization of the plasma synthetic jet actuator is investigated. The actuator consists of a copper anode, a tungsten cathode and a ceramic shell, and with these three parts a cavity can be formed inside the actuator. A pulsed-DC power supply was adopted to generate the arc plasma between the electrodes, through which the gas inside was heated and expanded from the orifice. Discharge parameters such as voltage and current were recorded, respectively, by voltage and current probes. The schlieren system was used for flow visualization, and jet velocities with different discharge parameters were measured. The schlieren images showed that the strength of plasma jets in a series of pulses varies from each other. Through velocity measurement, it is found that at a fixed frequency, the jet velocity hardly increases when the discharge voltage ranges from 16 kV to 20 kV. However, with the discharge voltage fixed, the jet velocity suddenly decreases when the pulse frequency rises above 500 Hz, whereas at other testing frequencies no such decrease was observed. The maximum jet velocity measured in the experiment was up to 110 m/s, which is believed to be effective for high-speed flow control. 展开更多
关键词 plasma aerodynamic actuation synthetic jet pulsed-DC discharge jet veloc-ity
下载PDF
Investigation on the shockwave induced by surface arc plasma in quiescent air 被引量:6
14
作者 金迪 李应红 +5 位作者 贾敏 李凡玉 崔巍 孙权 张百灵 李军 《Chinese Physics B》 SCIE EI CAS CSCD 2014年第3期396-403,共8页
The shockwave induced by surface direct-current (DC) arc discharge is investigated both experimentally and numer- ically. In the experiment, the shockwave generated by rapid gas heating is clearly observed from Schl... The shockwave induced by surface direct-current (DC) arc discharge is investigated both experimentally and numer- ically. In the experiment, the shockwave generated by rapid gas heating is clearly observed from Schlieren images. The peak velocity of the shockwave is measured to be over 410 m/s; during its upright movement, it gradually falls to about 340 m/s; no remarkable difference is seen after changing the discharge voltage and the pulse frequency. In the modeling of the arc plasma, the arc domain is not simulated as a boundary condition with fixed temperature or pressure, but a source term with a time-varying input power density, which could better reflect the influence of the heating process. It is found that with a reference power density of 2.8× 1012 W/m2, the calculated peak velocity is higher than the measured one, but they quickly (in 30 Its) become agreed with each other. The peak velocity also rises while increasing the power density, the maximum velocity acquired in the simulation is over 468 m/s, which is expected to be effective for high speed flow control. 展开更多
关键词 surface arc pulsed DC discharge SHOCKWAVE propagation velocity
下载PDF
Topological analysis of plasma flow control on corner separation in a highly loaded compressor cascade 被引量:4
15
作者 Xiao-Hu Zhao Yun Wu +2 位作者 Ying-Hong Li Xue-De Wang Qin Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第5期1277-1286,共10页
In this paper, flow behavior and topology structure in a highly loaded compressor cascade with and without plasma aerodynamic actuation (PAA) are investigated. Streamline pattern, total pressure loss coefficient, ou... In this paper, flow behavior and topology structure in a highly loaded compressor cascade with and without plasma aerodynamic actuation (PAA) are investigated. Streamline pattern, total pressure loss coefficient, outlet flow angle and topological analysis are considered to study the effect and mechanism of the plasma flow control on corner separation. Results presented include the boundary layer flow behavior, effects of three types of PAA on separated flows and performance parameters, topology structures and sequences of singular points with and without PAA. Two separation lines, reversed flow and backflow exist on the suction surface. The cross flow on the endwall is an important element for the comer separation. PAA can reduce the undertuming and overturning as well as the total pressure loss, leading to an overall increase of flow turning and enhancement of aerodynamic performance. PAA can change the topology structure, sequences of singular points and their corresponding separation lines. Types II and III PAA are much more efficient in controlling comer separation and enhancing aerodynamic performances than type I. 展开更多
关键词 Plasma aerodynamic actuation - Compressor CASCADE Topology structure Corner separation
下载PDF
Experimental Investigation on Airfoil Shock Control by Plasma Aerodynamic Actuation 被引量:5
16
作者 孙权 程邦勤 +3 位作者 李应红 崔巍 金迪 李军 《Plasma Science and Technology》 SCIE EI CAS CSCD 2013年第11期1136-1143,共8页
An experimental investigation on airfoil (NACA64-215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma -= 2). The results of schlieren and pressure measurement show that when p... An experimental investigation on airfoil (NACA64-215) shock control is performed by plasma aerodynamic actuation in a supersonic tunnel (Ma -= 2). The results of schlieren and pressure measurement show that when plasma aerodynamic actuation is applied, the position moves forward and the intensity of shock at the head of the airfoil weakens. With the increase in actuating voltage, the total pressure measured at the head of the airfoil increases, which means that the shock intensity decreases and the control effect increases. The best actuation effect is caused by upwind-direction actuation with a magnetic field, and then downwind-direction actuation with a magnetic field, while the control effect of aerodynamic actuation without a magnetic field is the most inconspicuous. The mean intensity of the normal shock at the head of the airfoil is relatively decreased by 16.33%, and the normal shock intensity is relatively reduced by 27.5% when 1000 V actuating voltage and upwind-direction actuation are applied with a magnetic field. This paper theoretically analyzes the Joule heating effect generated by DC discharge and the Lorentz force effect caused by the magnetic field. The discharge characteristics are compared for all kinds of actuation conditions to reveal the mechanism of shock control by plasma aerodynamic actuation. 展开更多
关键词 SUPERSONIC shock wave AIRFOIL arc plasma discharging characteristic
下载PDF
Experimental study on energy characteristics and ignition performance of recessed multichannel plasma igniter 被引量:3
17
作者 Bang-Huang Cai Hui-Min Song +3 位作者 Min Jia Yun Wu Wei Cui Sheng-Fang Huang 《Chinese Physics B》 SCIE EI CAS CSCD 2020年第6期339-348,共10页
In the extreme conditions of high altitude,low temperature,low pressure,and high speed,the aircraft engine is prone to flameout and difficult to start secondary ignition,which makes reliable ignition of combustion cha... In the extreme conditions of high altitude,low temperature,low pressure,and high speed,the aircraft engine is prone to flameout and difficult to start secondary ignition,which makes reliable ignition of combustion chamber at high altitude become a worldwide problem.To solve this problem,a kind of multichannel plasma igniter with round cavity is proposed in this paper,the three-channel and five-channel igniters are compared with the traditional ones.The discharge energy of the three igniters was compared based on the electric energy test and the thermal energy test,and ignition experiments was conducted in the simulated high-altitude environment of the component combustion chamber.The results show that the recessed multichannel plasma igniter has higher discharge energy than the conventional spark igniter,which can increase the conversion efficiency of electric energy from 26%to 43%,and the conversion efficiency of thermal energy from 25%to 73%.The recessed multichannel plasma igniter can achieve greater spark penetration depth and excitation area,which both increase with the increase of height.At the same height,the inlet flow helps to increase the penetration depth of the spark.The recessed multichannel plasma igniter can widen the lean ignition boundary,and the maximum enrichment percentage of lean ignition boundary can reach 31%. 展开更多
关键词 high altitude extreme condition recessed multichannel plasma igniter discharge energy lean ignition boundary
下载PDF
Experimental Investigation on Aerodynamic Control of a Wing with Distributed Plasma Actuators 被引量:3
18
作者 韩孟虎 李军 +2 位作者 梁华 牛中国 赵光银 《Plasma Science and Technology》 SCIE EI CAS CSCD 2015年第6期502-509,共8页
Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond... Experimental investigation of active flow control on the aerodynamic performance of a flying wing is conducted. Subsonic wind tunnel tests are performed using a model of a 35° swept flying wing with an nanosecond dielectric barrier discharge (NS-DBD) plasma actuator, which is installed symmetrically on the wing leading edge. The lift and drag coefficient, lift-to- drag ratio and pitching moment coefficient are tested by a six-component force balance for a range of angles of attack. The results indicate that a 44.5% increase in the lift coefficient, a 34.2% decrease in the drag coefficient and a 22.4% increase in the maximum lift-to-drag ratio can be achieved as compared with the baseline case. The effects of several actuation parameters are also investigated, and the results show that control efficiency demonstrates a strong dependence on actuation location and frequency. Furthermore, we highlight the use of distributed plasma actuators at the leading edge to enhance the aerodynamic performance, giving insight into the different mechanism of separation control and vortex control, which shows tremendous potential in practical flow control for a broad range of angles of attack. 展开更多
关键词 PLASMA flow separation control NS-DBD flying wing sequence
下载PDF
Influence of Microwave Power on the Properties of Hydrogenated Diamond-Like Carbon Films Prepared by ECR Plasma Enhanced DC Magnetron Sputtering 被引量:2
19
作者 汝丽丽 黄建军 +1 位作者 高亮 齐冰 《Plasma Science and Technology》 SCIE EI CAS CSCD 2010年第5期551-555,共5页
Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hy... Electron cyclotron resonance (ECR) plasma was applied to enhance the direct current magnetron sputtering to prepare hydrogenated diamond-like carbon (H-DLC) films. For different microwave powers, both argon and hydrogen gas are introduced separately as the ECR working gas to investigate the influence of microwave power on the microstructure and electrical property of the H-DLC films deposited on P-type silicon substrates. A series of characterization methods including the Raman spectrum and atomic force microscopy are used. Results show that, within a certain range, the increase in microwave power affects the properties of the thin films, namely the sp3 ratio, the hardness, the nanoparticle size and the resistivity all increase while the roughness decreases with the increase in microwave power. The maximum of resistivity amounts to 1.1×10^9 Ω.cm. At the same time it is found that the influence of microwave power on the properties of H-DLC films is more pronounced when argon gas is applied as the ECR working gas, compared to hydrogen gas. 展开更多
关键词 hydrogenated diamond-like carbon films ECR plasma magnetron sputtering microwave power
下载PDF
Numerical simulation of plasma-assisted combustion of methane-air mixtures in combustion chamber 被引量:3
20
作者 Jun DENG Liming HE +1 位作者 Xingjian LIU Yi CHEN 《Plasma Science and Technology》 SCIE EI CAS CSCD 2018年第12期75-85,共11页
A two-dimensional mathematical model was developed to investigate the effects of dielectric barrier discharge (DBD) plasma on CH4-air mixtures combustion at atmospheric pressure. Considering the physical and chemica... A two-dimensional mathematical model was developed to investigate the effects of dielectric barrier discharge (DBD) plasma on CH4-air mixtures combustion at atmospheric pressure. Considering the physical and chemical processes of plasma-assisted combustion (PAC), plasma discharge, heat transfer and turbulent were simultaneously coupled into simulation of PAC. This coupling model consists of DBD kinetic model and methane combustion model. By comparing simulations and the original reference's results, a high-accuracy of this model was validated. In addition, the effects of PAC actuation parameters on combustion characteristics were studied. Numerical simulations show that with an inlet airflow velocity of 10 m s-1, a CH4-air mixtures' equivalence ratio of 0.5, an applied voltage of 10 kV, a frequency of 1200 kHz, compared to conventional combustion (CC), the highest flame temperature rises by 32 K; outlet temperature distribution coefficient drops by 2.3%; the maximum net reaction rate of CH4 and H20 increase by 11.22% and 12.80% respectively; the maximum CO emission index decreases by 14.61%; the mixing region turbulence mixing time reduces by 89 ms. 展开更多
关键词 dielectric barrier discharge plasma-assisted combustion combustion chamber numerical simulation
下载PDF
上一页 1 2 13 下一页 到第
使用帮助 返回顶部