Effects of various sintering methods such as spark plasma sintering(SPS), hot pressing(HP) and electric resistance sintering(ERS) on the microstructure and mechanical properties of commercial pure titanium(CP-Ti) powd...Effects of various sintering methods such as spark plasma sintering(SPS), hot pressing(HP) and electric resistance sintering(ERS) on the microstructure and mechanical properties of commercial pure titanium(CP-Ti) powder consolidations with particle size of <147 μm, <74 μm and <43 μm were studied. The smaller particle powders are densified to proceed at a higher rate. Dense titanium with relative density up to 99% is found to take place at 850 °C under 30 MPa of SPS and HP condition. However, in case of ERS, CP-Ti powders were densified almost at 950 °C under 30 MPa. The microstructure of sintered titanium is composed of equiaxed grains at 850-950 °C. The yield strength of sintered body composed of <43 μm powder is 858 MPa by using SPS at 850 °C under 30 MPa. When there is a higher content of small particle, the higher yield strength value is obtained both by using SPS and HP. However, when ERS is introduced, the highest yield strength is 441 MPa at 950 °C under 30 MPa, which shows much lower values than those by SPS and HP methods. ERS method takes much less sintering time compared with SPS and HP. Nevertheless, higher sintering temperature results in lower strength and elongation because of brittle fracture.展开更多
The unique interactions between hexadecanoic acid(HA)and albumin(ALB)molecules on the surface of the porous layer of AZ31 Mg alloy were exploited to fabricate a novel hybrid composite film with excellent electrochemic...The unique interactions between hexadecanoic acid(HA)and albumin(ALB)molecules on the surface of the porous layer of AZ31 Mg alloy were exploited to fabricate a novel hybrid composite film with excellent electrochemical stability in a 3.5 wt.%Na Cl solution.Herein,the inorganic layer(IL)obtained by plasma electrolytic oxidation of AZ31 Mg alloy in an alkaline-phosphate-WO_(3)electrolyte was soaked in an organic solution composed of ALB and HA for 10 and 24 h at 60℃.Although albumin and HA may coexist on the same surface of IL,the higher reactivity of ALB molecules would prevent the formation of a thick layer of HA.The donor-acceptor complexes formed due to the unique interactions between ALB and/or HA and IL surface would reduce the area exposed to the corrosive species which in turn would efficiently protect the substrate from corrosion.The porous structure of the IL would provide preferable sites for the physical and chemical locking triggered by charge-transfer phenomena,leading to the inhomogeneous nucleation and crystal growth of a flowery flakes-like organic layer.DFT calculations were performed to reveal the primary bonding modes between the ALB,HA,and IL and to assess the mechanistic insights into the formation of such novel hybrid composites.展开更多
基金Project(K0004130) supported by the Fundamental R&D Program for Core Technology of Materials funded by the Ministry of Knowledge Economy,Korea
文摘Effects of various sintering methods such as spark plasma sintering(SPS), hot pressing(HP) and electric resistance sintering(ERS) on the microstructure and mechanical properties of commercial pure titanium(CP-Ti) powder consolidations with particle size of <147 μm, <74 μm and <43 μm were studied. The smaller particle powders are densified to proceed at a higher rate. Dense titanium with relative density up to 99% is found to take place at 850 °C under 30 MPa of SPS and HP condition. However, in case of ERS, CP-Ti powders were densified almost at 950 °C under 30 MPa. The microstructure of sintered titanium is composed of equiaxed grains at 850-950 °C. The yield strength of sintered body composed of <43 μm powder is 858 MPa by using SPS at 850 °C under 30 MPa. When there is a higher content of small particle, the higher yield strength value is obtained both by using SPS and HP. However, when ERS is introduced, the highest yield strength is 441 MPa at 950 °C under 30 MPa, which shows much lower values than those by SPS and HP methods. ERS method takes much less sintering time compared with SPS and HP. Nevertheless, higher sintering temperature results in lower strength and elongation because of brittle fracture.
基金the National Research Foundation of Korea(NRF)grant funded by the Korea government(MSIT)(No.NRF-2019R1G1A1099335)supported also by the Mid-Level Researcher National Project of the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea(NRF-2020R1A2C2004192)supported partly by Basic Research Program through the National Research Foundation,Republic of Korea(NRF-2019R1FA1062702)。
文摘The unique interactions between hexadecanoic acid(HA)and albumin(ALB)molecules on the surface of the porous layer of AZ31 Mg alloy were exploited to fabricate a novel hybrid composite film with excellent electrochemical stability in a 3.5 wt.%Na Cl solution.Herein,the inorganic layer(IL)obtained by plasma electrolytic oxidation of AZ31 Mg alloy in an alkaline-phosphate-WO_(3)electrolyte was soaked in an organic solution composed of ALB and HA for 10 and 24 h at 60℃.Although albumin and HA may coexist on the same surface of IL,the higher reactivity of ALB molecules would prevent the formation of a thick layer of HA.The donor-acceptor complexes formed due to the unique interactions between ALB and/or HA and IL surface would reduce the area exposed to the corrosive species which in turn would efficiently protect the substrate from corrosion.The porous structure of the IL would provide preferable sites for the physical and chemical locking triggered by charge-transfer phenomena,leading to the inhomogeneous nucleation and crystal growth of a flowery flakes-like organic layer.DFT calculations were performed to reveal the primary bonding modes between the ALB,HA,and IL and to assess the mechanistic insights into the formation of such novel hybrid composites.