A modular numerical model was developed for simulating density-stratified flow in domains with irregular bottom topography. The model was designed for examining interactions between stratified flow and topography, e.g...A modular numerical model was developed for simulating density-stratified flow in domains with irregular bottom topography. The model was designed for examining interactions between stratified flow and topography, e.g,, tidally driven flow over two-dimensional sills or internal solitary waves propagating over a shoaling bed. The model was based on the non-hydrostatic vorticity-stream function equations for a continuously stratified fluid in a rotating frame. A self-adaptive grid was adopted in the vertical coordinate, the Alternative Direction Implicit (ADI) scheme was used for the time marching equations while the Poisson equation for stream-function was solved based on the Successive Over Relaxation (SOR) iteration with the Chebyshev acceleration. The numerical techniques were described and three applications of the model were presented.展开更多
基金Project supported by the National Science and Technology Supporting Plan (Grant No. 2006BAB18B03).
文摘A modular numerical model was developed for simulating density-stratified flow in domains with irregular bottom topography. The model was designed for examining interactions between stratified flow and topography, e.g,, tidally driven flow over two-dimensional sills or internal solitary waves propagating over a shoaling bed. The model was based on the non-hydrostatic vorticity-stream function equations for a continuously stratified fluid in a rotating frame. A self-adaptive grid was adopted in the vertical coordinate, the Alternative Direction Implicit (ADI) scheme was used for the time marching equations while the Poisson equation for stream-function was solved based on the Successive Over Relaxation (SOR) iteration with the Chebyshev acceleration. The numerical techniques were described and three applications of the model were presented.