Majority of models of terrestrial magnetism try to explain why the main magnetic field of the Earth near the poles is of the order of 1 Oe. Such statement of the basic problem of terrestrial magnetism models nowadays ...Majority of models of terrestrial magnetism try to explain why the main magnetic field of the Earth near the poles is of the order of 1 Oe. Such statement of the basic problem of terrestrial magnetism models nowadays is unacceptable. Space flights and the development of astronomy show a remarkable and earlier unknown fact that magnetic moments of all planets of Solar system, as well as some their satellites and a number of stars are proportional to their angular momenta. Therefore, this geophysical problem turned into a special case of the more general problem of magnetism of cosmic bodies. This fact makes it necessary to reformulate the main task of the model of terrestrial magnetism and the Earth as a whole. It should explain, first, why the magnetic moment of the Earth, as well as of other space bodies, is proportional to its angular momentum and, second, why the proportionality coefficient is close to the ratio of world constants—to?G1/2/c. This fact requires a rethinking in the constructing of a model of the internal structure of the Earth and the reformulation of the main objectives of terrestrial magnetism, whereas it is necessary to explain why the ratio of the magnetic moment of the Earth to its torque, as well as for other celestial bodies, is close to the ratio of universal constants?G1/2/c. In the discussed theory it is shown that one can see that it is energetically favorable for hot stars to have its core consisting from dense electron-nuclear plasma with constant density and temperature. It is shown that as for the Earth it is energetically favorable to have its core consisting from dense electron-ion plasma. Importantly, all calculated parameters are in an agreement with measurement results.展开更多
A new approach to the problem of nuclear force nature is considered. It is shown that an attraction in the proton-neutron pair can occur due to the exchange of relativistic electron. The estimation of this exchange en...A new approach to the problem of nuclear force nature is considered. It is shown that an attraction in the proton-neutron pair can occur due to the exchange of relativistic electron. The estimation of this exchange energy is in agreement with the experimental values of the binding energy of some light nuclei. At that, neutron is regarded as a composite corpuscule consisting of proton and relativistic electron that allows predicting the neutron magnetic moment, its mass and the energy of its decay.展开更多
文摘Majority of models of terrestrial magnetism try to explain why the main magnetic field of the Earth near the poles is of the order of 1 Oe. Such statement of the basic problem of terrestrial magnetism models nowadays is unacceptable. Space flights and the development of astronomy show a remarkable and earlier unknown fact that magnetic moments of all planets of Solar system, as well as some their satellites and a number of stars are proportional to their angular momenta. Therefore, this geophysical problem turned into a special case of the more general problem of magnetism of cosmic bodies. This fact makes it necessary to reformulate the main task of the model of terrestrial magnetism and the Earth as a whole. It should explain, first, why the magnetic moment of the Earth, as well as of other space bodies, is proportional to its angular momentum and, second, why the proportionality coefficient is close to the ratio of world constants—to?G1/2/c. This fact requires a rethinking in the constructing of a model of the internal structure of the Earth and the reformulation of the main objectives of terrestrial magnetism, whereas it is necessary to explain why the ratio of the magnetic moment of the Earth to its torque, as well as for other celestial bodies, is close to the ratio of universal constants?G1/2/c. In the discussed theory it is shown that one can see that it is energetically favorable for hot stars to have its core consisting from dense electron-nuclear plasma with constant density and temperature. It is shown that as for the Earth it is energetically favorable to have its core consisting from dense electron-ion plasma. Importantly, all calculated parameters are in an agreement with measurement results.
文摘A new approach to the problem of nuclear force nature is considered. It is shown that an attraction in the proton-neutron pair can occur due to the exchange of relativistic electron. The estimation of this exchange energy is in agreement with the experimental values of the binding energy of some light nuclei. At that, neutron is regarded as a composite corpuscule consisting of proton and relativistic electron that allows predicting the neutron magnetic moment, its mass and the energy of its decay.