The visualization of drugs in living systems has become key techniques in modern therapeutics.Recent advancements in optical imaging technologies and molecular design strategies have revolutionized drug visualization....The visualization of drugs in living systems has become key techniques in modern therapeutics.Recent advancements in optical imaging technologies and molecular design strategies have revolutionized drug visualization.At the subcellular level,super-resolution microscopy has allowed exploration of the molecular landscape within individual cells and the cellular response to drugs.Moving beyond subcellular imaging,researchers have integrated multiple modes,like optical near-infrared II imaging,to study the complex spatiotemporal interactions between drugs and their surroundings.By combining these visualization approaches,researchers gain supplementary information on physiological parameters,metabolic activity,and tissue composition,leading to a comprehensive understanding of drug behavior.This review focuses on cutting-edge technologies in drug visualization,particularly fluorescence imaging,and the main types of fluorescent molecules used.Additionally,we discuss current challenges and prospects in targeted drug research,emphasizing the importance of multidisciplinary cooperation in advancing drug visualization.With the integration of advanced imaging technology and molecular design,drug visualization has the potential to redefine our understanding of pharmacology,enabling the analysis of drug micro-dynamics in subcellular environments from new perspectives and deepening pharmacological research to the levels of the cell and organelles.展开更多
Attacking time-sensitive targets has rigid demands for the timeliness and reliability of information transmission, while typical Media Access Control(MAC) designed for this application works well only in very light-...Attacking time-sensitive targets has rigid demands for the timeliness and reliability of information transmission, while typical Media Access Control(MAC) designed for this application works well only in very light-load scenarios; as a consequence, the performances of system throughput and channel utilization are degraded. For this problem, a feedback-retransmission based asynchronous FRequency hopping Media Access(FRMA) control protocol is proposed. Burst communication, asynchronous Frequency Hopping(FH), channel coding, and feedback retransmission are utilized in FRMA. With the mechanism of asynchronous FH, immediate packet transmission and multi-packet reception can be realized, and thus the timeliness is improved.Furthermore, reliability can be achieved via channel coding and feedback retransmission. With theories of queuing theory, Markov model, packets collision model, and discrete Laplace transformation, the formulas of packet success probability, system throughput, average packet end-to-end delay, and delay distribution are obtained. The approximation accuracy of theoretical derivation is verified by experimental results. Within a light-load network, the proposed FRMA has the ability of millisecond delay and 99% reliability as well as outperforms the non-feedback-retransmission based asynchronous frequency hopping media access control protocol.展开更多
Reverberation is significant in shallow water and produces obvious notches in OBC spec- tra. It also degrades the quality of sections and increases the difficulty of processing and interpretation. This article present...Reverberation is significant in shallow water and produces obvious notches in OBC spec- tra. It also degrades the quality of sections and increases the difficulty of processing and interpretation. This article presents the relationship between notch, shooting depth, and seabed depth based on the seismic convolution model. Forward modelling based on wave equation theory is used to verify this relationship. Dual-sensor summation is applied to suppress receiver-side multiples and remove notches according to the opposite response of geophones and hydrophones to down-going wave fields based on a detailed analysis of the OBC technique. The good results obtained in practical applications reveal the effectiveness of this method.展开更多
基金supported by the Shandong Province Key R&D Program(Major Technological Innovation Project,2021CXGC010501,China)National Natural Science Foundation of China(Nos.22107059,22007060,32300957,82141209)+9 种基金Young Elite Scientists Sponsorship Program by CACM,China(CACM-2023-QNRC1-02)the key Program of Natural Science Foundation of Shandong Province(ZR2023ZD25,China)Natural Science Foundation of Shandong Province(ZR2021QH057,ZR2022QH304,ZR2020QB166,ZR2023QH427,China)Innovation Team of Shandong Higher School Youth Innovation Technology Program(2021KJ035,2022KJ197,China)Taishan Scholars Project in Shandong Province,China(TSPD20181218 TSTP20230633 TSQN202211221)Shandong Science Fund for Excellent Young Scholars(ZR2022YQ66,China)Jinan New 20 Policies for Higher Education Funding(202228048,China)Natural Science Foundation of Shandong Province(Joint Fundation for Innovation and Development,ZR2022LZY021,China)Youth Qihuang Scholars Support Program of the State Administration of Traditional Chinese Medicine,Tianjin Graduate Research Innovation Project(General Project,2022BKY180,China)TUTCM Graduate Research Innovation Project(General Project)and Shandong Province Traditional Chinese Medicine Science and Technology Project(M-2023208,China).
文摘The visualization of drugs in living systems has become key techniques in modern therapeutics.Recent advancements in optical imaging technologies and molecular design strategies have revolutionized drug visualization.At the subcellular level,super-resolution microscopy has allowed exploration of the molecular landscape within individual cells and the cellular response to drugs.Moving beyond subcellular imaging,researchers have integrated multiple modes,like optical near-infrared II imaging,to study the complex spatiotemporal interactions between drugs and their surroundings.By combining these visualization approaches,researchers gain supplementary information on physiological parameters,metabolic activity,and tissue composition,leading to a comprehensive understanding of drug behavior.This review focuses on cutting-edge technologies in drug visualization,particularly fluorescence imaging,and the main types of fluorescent molecules used.Additionally,we discuss current challenges and prospects in targeted drug research,emphasizing the importance of multidisciplinary cooperation in advancing drug visualization.With the integration of advanced imaging technology and molecular design,drug visualization has the potential to redefine our understanding of pharmacology,enabling the analysis of drug micro-dynamics in subcellular environments from new perspectives and deepening pharmacological research to the levels of the cell and organelles.
基金supported by the National Natural Science Foundation of China(No.61501496)
文摘Attacking time-sensitive targets has rigid demands for the timeliness and reliability of information transmission, while typical Media Access Control(MAC) designed for this application works well only in very light-load scenarios; as a consequence, the performances of system throughput and channel utilization are degraded. For this problem, a feedback-retransmission based asynchronous FRequency hopping Media Access(FRMA) control protocol is proposed. Burst communication, asynchronous Frequency Hopping(FH), channel coding, and feedback retransmission are utilized in FRMA. With the mechanism of asynchronous FH, immediate packet transmission and multi-packet reception can be realized, and thus the timeliness is improved.Furthermore, reliability can be achieved via channel coding and feedback retransmission. With theories of queuing theory, Markov model, packets collision model, and discrete Laplace transformation, the formulas of packet success probability, system throughput, average packet end-to-end delay, and delay distribution are obtained. The approximation accuracy of theoretical derivation is verified by experimental results. Within a light-load network, the proposed FRMA has the ability of millisecond delay and 99% reliability as well as outperforms the non-feedback-retransmission based asynchronous frequency hopping media access control protocol.
基金supported by the National Natural Science Foundation of China(Nos.41176077 and 41074077)the Key Laboratory of Marine Hydrocarbon Resources and Environmental Geology,Ministry of Land and Resources of China(No.MRE201303)
文摘Reverberation is significant in shallow water and produces obvious notches in OBC spec- tra. It also degrades the quality of sections and increases the difficulty of processing and interpretation. This article presents the relationship between notch, shooting depth, and seabed depth based on the seismic convolution model. Forward modelling based on wave equation theory is used to verify this relationship. Dual-sensor summation is applied to suppress receiver-side multiples and remove notches according to the opposite response of geophones and hydrophones to down-going wave fields based on a detailed analysis of the OBC technique. The good results obtained in practical applications reveal the effectiveness of this method.