期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Building stabilized Cu_(0.17)Mn_(0.03)V_(2)O_(5−□)·2.16H_(2)O cathode enables an outstanding room‐/low‐temperature aqueous Zn‐ion batteries
1
作者 Ao Wang Dai‐Huo Liu +9 位作者 Lin Yang Fang Xu Dan Luo Haozhen Dou Mengqin Song Chunyan Xu Beinuo Zhang Jialin Zheng Zhongwei Chen Zhengyu Bai 《Carbon Energy》 SCIE EI CAS CSCD 2024年第8期25-35,共11页
Vanadium oxide cathode materials with stable crystal structure and fast Zn^(2+)storage capabilities are extremely important to achieving outstanding electrochemical performance in aqueous zinc‐ion batteries.In this w... Vanadium oxide cathode materials with stable crystal structure and fast Zn^(2+)storage capabilities are extremely important to achieving outstanding electrochemical performance in aqueous zinc‐ion batteries.In this work,a one‐step hydrothermal method was used to manipulate the bimetallic ion intercalation into the interlayer of vanadium oxide.The pre‐intercalated Cu ions act as pillars to pin the vanadium oxide(V‐O)layers,establishing stabilized two‐dimensional channels for fast Zn^(2+)diffusion.The occupation of Mn ions between V‐O interlayer further expands the layer spacing and increases the concentration of oxygen defects(Od),which boosts the Zn^(2+)diffusion kinetics.As a result,as‐prepared Cu_(0.17)Mn_(0.03)V_(2)O_(5−□)·2.16H_(2)O cathode shows outstanding Zn‐storage capabilities under room‐and lowtemperature environments(e.g.,440.3 mAh g^(−1)at room temperature and 294.3 mAh g^(−1)at−60°C).Importantly,it shows a long cycling life and high capacity retention of 93.4%over 2500 cycles at 2 A g^(−1)at−60°C.Furthermore,the reversible intercalation chemistry mechanisms during discharging/charging processes were revealed via operando X‐ray powder diffraction and ex situ Raman characterizations.The strategy of a couple of 3d transition metal doping provides a solution for the development of superior room‐/lowtemperature vanadium‐based cathode materials. 展开更多
关键词 aqueous zinc‐ion batteries Cu_(0.17)Mn_(0.03)V_(2)O_(5−□)·2.16H_(2)O oxygen defects room‐/lowtemperature performance stabilized nanostructure
下载PDF
A review of electrospun separators for lithium-based batteries: Progress and application prospects
2
作者 Xiangru Sun Ying Zhou +6 位作者 Dejun Li Kai Zhao Liqun Wang Peiran Tan Hongyang Dong Yueming Wang Ji Liang 《Carbon Energy》 SCIE EI CAS CSCD 2024年第9期109-155,共47页
Due to the limitations of the raw materials and processes involved,polyolefin separators used in commercial lithium-ion batteries(LIBs)have gradually failed to meet the increasing requirements of high-end batteries in... Due to the limitations of the raw materials and processes involved,polyolefin separators used in commercial lithium-ion batteries(LIBs)have gradually failed to meet the increasing requirements of high-end batteries in terms of energy density,power density,and safety.Hence,it is very important to develop next-generation separators for advanced lithium(Li)-based recharge-able batteries including LIBs and Li-S batteries.Nonwoven nanofiber membranes fabricated via electrospinning technology are highly attractive candidates for high-end separators due to their simple processes,low-cost equipment,controllable microporous structure,wide material applicability,and availability of multiple functions.In this review,the electrospinning technologies for separators are reviewed in terms of devices,process and environment,and polymer solution systems.Furthermore,strategies toward the improvement of electrospun separators in advanced LIBs and Li-S batteries are presented in terms of the compositions and the structure of nanofibers and separators.Finally,the challenges and prospects of electrospun separators in both academia and industry are proposed.We anticipate that these systematic discussions can provide information in terms of commercial applications of electrospun separators and offer new perspectives for the design of functional electrospun separators for advanced Li-based batteries. 展开更多
关键词 ELECTROSPINNING Li-metal batteries Li-S batteries lithium-ion batteries SEPARATOR
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部