期刊文献+
共找到35篇文章
< 1 2 >
每页显示 20 50 100
A novel nano-grade organosilicon polymer:Improving airtightness of compressed air energy storage in hard rock formations
1
作者 Zhuyan Zheng Guibin Wang +7 位作者 Chunhe Yang Hongling Ma Liming Yin Youqiang Liao Kai Zhao Zhen Zeng Hang Li Yue Han 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第3期305-321,共17页
Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a ... Enhancing cavern sealing is crucial for improving the efficiency of compressed air energy storage(CAES)in hard rock formations.This study introduced a novel approach using a nano-grade organosilicon polymer(NOSP)as a sealant,coupled with an air seepage evaluation model that incorporates Knudsen diffusion.Moreover,the initial coating application methods were outlined,and the advantages of using NOSP compared to other sealing materials,particularly regarding cost and construction techniques,were also examined and discussed.Experimental results indicated a significant reduction in permeability of rock specimens coated with a 7–10μm thick NOSP layer.Specifically,under a 0.5 MPa pulse pressure,the permeability decreased to less than 1 n D,and under a 4 MPa pulse pressure,it ranged between4.5×10^(-6)–5.5×10^(-6)m D,marking a 75%–80%decrease in granite permeability.The sealing efficacy of NOSP surpasses concrete and is comparable to rubber materials.The optimal viscosity for application lies between 95 and 105 KU,and the coating thickness should ideally range from 7 to 10μm,applied to substrates with less than 3%porosity.This study provides new insights into air transport and sealing mechanisms at the pore level,proposing NOSP as a cost-effective and simplified solution for CAES applications. 展开更多
关键词 Compressed air energy storage LINING Permeability Transient pulse method Hard rock cavern Nano-grade organosilicon polymer coating
下载PDF
Dynamic Analysis of a 10 MW Floating Offshore Wind Turbine Considering the Tower and Platform Flexibility
2
作者 GAO Shan ZHANG Lixian +3 位作者 SHI Wei WANG Wenhua WANG Bin LI Xin 《Journal of Ocean University of China》 CAS CSCD 2024年第2期358-370,共13页
Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered ... Recently,semisubmersible floating offshore wind turbine technologies have received considerable attention.For the coupled simulation of semisubmersible floating offshore wind energy,the platform is usually considered a rigid model,which could affect the calculation accuracy of the dynamic responses.The dynamic responses of a TripleSpar floating offshore wind turbine equipped with a 10 MW offshore wind turbine are discussed herein.The simulation of a floating offshore wind turbine under regular waves,white noise waves,and combined wind-wave conditions is conducted.The effects of the tower and platform flexibility on the motion and force responses of the TripleSpar semisubmersible floating offshore wind turbine are investigated.The results show that the flexibility of the tower and platform can influence the dynamic responses of a TripleSpar semisubmersible floating offshore wind turbine.Considering the flexibility of the tower and platform,the tower and platform pitch motions markedly increased compared with the fully rigid model.Moreover,the force responses,particularly for tower base loads,are considerably influenced by the flexibility of the tower and platform.Thus,the flexibility of the tower and platform for the coupled simulation of floating offshore wind turbines must be appropriately examined. 展开更多
关键词 floating offshore wind turbine TripleSpar semisubmersible platform rigidity and flexibility platform coupled simulation
下载PDF
Conditional Generative Adversarial Network Enabled Localized Stress Recovery of Periodic Composites
3
作者 Chengkan Xu Xiaofei Wang +2 位作者 Yixuan Li Guannan Wang He Zhang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期957-974,共18页
Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstru... Structural damage in heterogeneousmaterials typically originates frommicrostructures where stress concentration occurs.Therefore,evaluating the magnitude and location of localized stress distributions within microstructures under external loading is crucial.Repeating unit cells(RUCs)are commonly used to represent microstructural details and homogenize the effective response of composites.This work develops a machine learning-based micromechanics tool to accurately predict the stress distributions of extracted RUCs.The locally exact homogenization theory efficiently generates the microstructural stresses of RUCs with a wide range of parameters,including volume fraction,fiber/matrix property ratio,fiber shapes,and loading direction.Subsequently,the conditional generative adversarial network(cGAN)is employed and constructed as a surrogate model to establish the statistical correlation between these parameters and the corresponding localized stresses.The stresses predicted by cGAN are validated against the remaining true data not used for training,showing good agreement.This work demonstrates that the cGAN-based micromechanics tool effectively captures the local responses of composite RUCs.It can be used for predicting potential crack initiations starting from microstructures and evaluating the effective behavior of periodic composites. 展开更多
关键词 Periodic composites localized stress recovery conditional generative adversarial network
下载PDF
Full-Scale Numerical Simulation of the Local Scour Under Combined Current and Wave Conditions Based on Field Data
4
作者 SUI Shu-huan ZHAO Xue-liang +2 位作者 CHEN Xin-rui DENG Wen-ni SHEN Kan-min 《China Ocean Engineering》 SCIE EI CSCD 2023年第6期1032-1043,共12页
The monopile is the most common foundation to support offshore wind turbines.In the marine environment,local scour due to combined currents and waves is a significant issue that must be considered in the design of win... The monopile is the most common foundation to support offshore wind turbines.In the marine environment,local scour due to combined currents and waves is a significant issue that must be considered in the design of wind turbine foundations.In this paper,a full-scale numerical model was developed and validated based on field data from Rudong,China.The scour development around monopiles was investigated,and the effects of waves and the Reynolds number Re were analyzed.Several formulas for predicting the scour depth in the literature have been evaluated.It is found that waves can accelerate scour development even if the KC number is small(0.78<KC<1.57).The formula obtained from small-scale model tests may be unsafe or wasteful when it is applied in practical design due to the scale effect.A new equation for predicting the scour depth based on the average pile Reynolds number(Rea)is proposed and validated with field data.The equilibrium scour depth predicted using the proposed equation is evaluated and compared with those from nine equations in the literature.It is demonstrated that the values predicted from the proposed equation and from the S/M(Sheppard/Melville)equation are closer to the field data. 展开更多
关键词 full-scale numerical simulation field data scale effect Reynolds number effects local scour
下载PDF
Survey on performance of vertical slot and nature-like fishways at Angu hydropower station, Southwest China
5
作者 Jun-jian Sun Jia-yue Shi +2 位作者 Qi Zhang Xiao-tao Shi Jun-jun Tan 《Water Science and Engineering》 EI CAS CSCD 2024年第1期83-91,共9页
To restore dam-blocked natural fish migratory passages,a growing number of artificial fishways have been built in water conservancy and hydropower projects in China.The Angu hydropower station involved diverse importa... To restore dam-blocked natural fish migratory passages,a growing number of artificial fishways have been built in water conservancy and hydropower projects in China.The Angu hydropower station involved diverse important fish habitats in the lower reaches of the Daduhe River in Southwest China.Therefore,a vertical slot fishway(VSF)and a nature-like fishway(NLF)were built near the backwater area of the reservoir to connect the upstream and downstream habitats.Hydrodynamic and aquatic ecological surveys were conducted after the completion of the project to estimate the fish passing effect of the two fishways.The results indicated that both fishways were in effective operation and could maintain the desired hydrodynamic conditions and be used by several local fish species.During the survey,149 fish from 15 species and 111 fish from 17 species were captured by the traps in the VSF and NLF,respectively,while 1263 fish from 27 species were found in the downstream area.Some species captured in the VSF were not found in the NLF,and vice versa,which implied the different preferences of fish.Meanwhile,3789 signals including 2099 upward ones and 1690 downward ones were monitored with an ultrasonic fish detector at the inlet of the VSF.These findings revealed the characteristics of fish species observed in and near the fishways and provided valuable insights into the different fish passing capabilities of VSFandNLF. 展开更多
关键词 Vertical slot fishway Nature-like fishway Aguatic ecological survey Fishwaymonitoring Statistical analysis
下载PDF
Ice-Induced Vibrational Response of Single-Pile Offshore Wind-Turbine Foundations
6
作者 Zhoujie Zhu Gang Wang +3 位作者 Qingquan Liu Guojun Wang Rui Dong Dayong Zhang 《Fluid Dynamics & Materials Processing》 EI 2024年第3期625-639,共15页
Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform... Important challenges must be addressed to make wind turbines sustainable renewable energy sources.A typical problem concerns the design of the foundation.If the pile diameter is larger than that of the jacket platform,traditional mechanical models cannot be used.In this study,relying on the seabed soil data of an offshore wind farm,the m-method and the equivalent embedded method are used to address the single-pile wind turbine foundation problem for different pile diameters.An approach to determine the equivalent pile length is also proposed accordingly.The results provide evidence for the effectiveness and reliability of the model based on the equivalent embedded method. 展开更多
关键词 Wind turbine ice-induced vibration dynamic response equivalent embedded method
下载PDF
Laboratory investigation into effect of bolt profiles on shear behaviors of bolt-grout interface under constant normal stiffness (CNS) conditions 被引量:2
7
作者 Guojian Cui Chuanqing Zhang +2 位作者 Yibin Pan Liang Deng Hui Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第6期1234-1248,共15页
Rock bolts have been widely used for stabilizing rock mass in geotechnical engineering.It is acknowledged that the bolt profiles have a sound influence on the support effect of the rock bolting system.Previous studies... Rock bolts have been widely used for stabilizing rock mass in geotechnical engineering.It is acknowledged that the bolt profiles have a sound influence on the support effect of the rock bolting system.Previous studies have proposed some optimal rib parameters(e.g.rib spacing);unfortunately,the interface shear behaviors are generally ignored.Therefore,determination of radial stress and radial displacement on the bolt-grout interface using traditional pull-out tests is not possible.The load-bearing capacity and deformation capacity vary as bolt profiles differ,suggesting that the support effect of the bolting system can be enhanced by optimizing bolt profiles.The aim of this study is to investigate the effects of bolt profiles(with/without ribs,rib spacing,and rib height)on the shear behaviors between the rock bolt and grout material using direct shear tests.Thereby,systematic interfacial shear tests with different bolt profiles were performed under both constant normal load(CNL)and constant normal stiffness(CNS)boundary conditions.The results suggested that rib spacing has a more marked influence on the interface shear behavior than rib height does,in particular at the post-yield stage.The results could facilitate our understanding of bolt-grout interface shear behavior under CNS conditions,and optimize selection of rock bolts under in situ rock conditions. 展开更多
关键词 Bolt profile Constant normal stiffness(CNS) Shear test Interface failure characteristics Shear behaviors
下载PDF
Comparative analysis of deformation and failure mechanisms of underground powerhouses on the left and right banks of Baihetan hydropower station
8
作者 Anchi Shi Congjiang Li +3 位作者 Wangbing Hong Gongda Lu Jiawen Zhou Haibo Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第3期731-745,共15页
The stability of the surrounding rocks of large underground powerhouses is always emphasized during the construction process,especially in large-scale underground projects under construction,such as the Baihetan hydro... The stability of the surrounding rocks of large underground powerhouses is always emphasized during the construction process,especially in large-scale underground projects under construction,such as the Baihetan hydropower station in China.According to field investigations,numerical simulations and monitoring data analysis,we present a comparative analysis of the deformation and failure characteristics of the surrounding rocks of underground powerhouses on the left and right banks of the Baihetan hydropower station.The failure characteristics and deformation magnitude of the underground powerhouses on the left and right banks are quite different.Under the disadvantageous condition where the maximum principal stress intersects the axis of the powerhouse at a large angle,the left bank underground powerhouse shows prominent stress-controlled failure characteristics such as spalling,slack collapse and concrete cracking.Although the maximum principal stress is in the favorable condition which intersects the right bank powerhouse at a small angle,the relatively high intermediate principal stress with an angle subvertical to the right bank powerhouse plays an essential role in its deformation and failure,indicating that the influence of high intermediate principal stress cannot be ignored.In addition,structural plane-controlled failure and large deformation are also more evident on the right bank due to the extensive distribution of weak structural planes and complex surrounding rock properties. 展开更多
关键词 Underground powerhouse Stress-controlled failure Structural plane-controlled failure Large deformation Intermediate principal stress
下载PDF
Application of Converted Displacement for Modal Parameter Identification of Offshore Wind Turbines with High-Pile Foundation
9
作者 LI Ying WANG Bin +2 位作者 LIU Qiang GAO Shan LU Sujie 《Journal of Ocean University of China》 SCIE CAS CSCD 2022年第6期1467-1478,共12页
In the actual measurement of offshore wind turbines(OWTs),the measured accelerations usually contain a large amount of noise due to the complex and harsh marine environment,which is not conducive to the identification... In the actual measurement of offshore wind turbines(OWTs),the measured accelerations usually contain a large amount of noise due to the complex and harsh marine environment,which is not conducive to the identification of structural modal parameters.For OWTs with remarkably low structural modal frequencies,displacements can effectively suppress the high-frequency vibration noise and amplify the low-frequency vibration of the structure.However,finding a reference point to measure structural displacements at sea is difficult.Therefore,only a few studies on the use of dynamic displacements to identify the modal parameters of OWTs with high-pile foundations are available.Hence,this paper develops a displacement conversion strategy to study the modal parameter identification of OWTs with high-pile foundations.The developed strategy can be divided into the following three parts:zero-order correction of measured acceleration,high-pass filtering by the Butterworth polynomial,and modal parameter identification using the calculated displacement.The superiority of the proposed strategy is verified by analyzing a numerical OWT with a high-pile foundation and the measured accelerations from an OWT with a high-pile foundation.The results show that for OWTs with high-pile foundations dominated by low frequencies,the developed strategy of converting accelerations into displacements and then performing modal parameter identification is advantageous to the identification of modal parameters,and the results have high accuracy. 展开更多
关键词 offshore wind turbine high-pile foundation modal parameter identification baseline drift low-frequency noise
下载PDF
Planning and Design of Urban Riverfront Spaces Based on Comprehensive River Regulation:A Case Study of Comprehensive Regulation Project of the Old Huan River in Hubei
10
作者 PEI Pei DONG Li LI Tianfei 《Journal of Landscape Research》 2020年第4期1-4,共4页
Urban construction in China has changed from“extensional sprawl”to“connotative development”.With the accelerating urbanization and improvement of living standards,citizens have had higher and more requirements on ... Urban construction in China has changed from“extensional sprawl”to“connotative development”.With the accelerating urbanization and improvement of living standards,citizens have had higher and more requirements on urban waterfront spaces.Starting from the history and characteristics of comprehensive river regulation,this paper explored its multiple meanings against the new appeals of urban development.On this basis,design and planning approaches were discussed from 3 perspectives of waterfront space planning control,waterfront space design optimization,and improvement of waterfront landscape,then the planning and design strategies of urban waterfront spaces were explored by studying the comprehensive waterfront space regulation project of the Old Huan River in Hubei,so as to provide references for the comprehensive water system regulation and space planning and construction of urban waterfront spaces. 展开更多
关键词 Comprehensive river regulation Waterfront space Planning and design
下载PDF
Correctly Evaluating the Effect of Agricultural Water Saving
11
作者 Wang Xiaozhen Wang Yanru Zhou Yifan 《Meteorological and Environmental Research》 CAS 2018年第1期83-87,共5页
Water conservation has become the consensus of the whole society and is the general direction of social development. But there is a misunderstanding about the ultimate effect of water saving in agriculture. In the pro... Water conservation has become the consensus of the whole society and is the general direction of social development. But there is a misunderstanding about the ultimate effect of water saving in agriculture. In the process of comparison,it is easy to draw the conclusion that water saving is better than development of water resources. The difference between water saving and inter-basin water diversion should be correctly understood to avoid misleading decisions. In this paper,the effects of water saving and water transfer in typical irrigation areas were calculated and compared. 展开更多
关键词 Resource-based water shortage Water savinch Water transfer EFFECT
下载PDF
In situ strength profiles along two adjacent vertical drillholes from digitalization of hydraulic rotary drilling 被引量:1
12
作者 Xuefan Wang Peng Peng +1 位作者 Zhigang Shan Zhongqi Yue 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期146-168,共23页
Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from... Drilling speed and associated analyses from factual field data of hydraulic rotary drilling have not been fully utilized.The paper provides the reference and comparison for the utilization of drilling information from two adjacent vertical drillholes that were formed with the same hydraulic rotary drilling machine and bit.The analysis of original factual data is presented to obtain the constant drilling speed during net drilling process.According to the factual data along two adjacent drillholes,the digitalization results respectively include 461 linear zones and 210 linear zones with their constant drilling speeds and associated drilling parameters.The digitalization results can accurately present the spatial distributions and interface boundaries of drilled geomaterials and the results are consistent with the paralleled site loggings.The weighted average drilling speeds from 2.335 m/min to 0.044 m/min represent 13 types of drilled geomaterials from soils to hard rocks.The quantitative relation between drilling speed and strength property is provided.The digitalization results can statistically profile the basic strength quality grades of III to VI from soils to hard rocks.The thickness distributions of four strength quality grades are presented for each individual type of geomaterials along two drillholes.In total,50.2%of geomaterials from drillhole A are grade IV and 57.4%of geomaterials from drillhole B are grade III.The digitalization results can offer an accurate and cost-effective tool to quantitatively describe the spatial distribution and in situ strength profile of drilled geomaterials in the current drilling projects. 展开更多
关键词 Drilling process monitoring(DPM) Hydraulic rotary coring process Constant drilling speed Coring-resistant strength
下载PDF
锚泊线海床开槽与锚泊基础承载力研究进展综述
13
作者 芮圣洁 周文杰 +1 位作者 沈侃敏 国振 《哈尔滨工程大学学报(英文版)》 CSCD 2023年第2期296-310,共15页
Mooring systems are usually adopted to position floating structures,including mooring lines and anchors,and directly determine the safety of floating structures.Seabed inspection reported that seabed trenches induced ... Mooring systems are usually adopted to position floating structures,including mooring lines and anchors,and directly determine the safety of floating structures.Seabed inspection reported that seabed trenches induced by mooring line-soil interaction appear in front of the anchor and reduce the anchor bearing capacity.This work first introduces the research progress of mooring line-soil interaction and seabed trenching simulation.Research about the suction anchor capacity in clay and sand is presented,and the seabed trench influence on anchor capacity is analyzed.For anchor analysis,this study gives a new perspective to analyze anchor installation and bearing capacity,i.e.,structure-soil interface characteristic.Some common anchor types are analyzed.Results showed that seabed trench simulation is still needed to acquire trench 3D profiles,in which the mooring line-soil dynamic interaction cannot be ignored.At present,the trench influence is not considered in suction anchor design,making the design dangerous.For the anchor,the interface shear characteristics control the most unfavorable loading conditions.Thus,accurate interface parameters should be obtained for anchor analysis. 展开更多
关键词 Seabed trench Mooring line ANCHOR Bearing capacity Interface shear
下载PDF
Rehabilitation of Overhead Crane in HPP
14
作者 Nannan Qu Yonggang Si +2 位作者 Fupeng Zheng Zhi Chen Jiuqiang Huang 《Modern Electronic Technology》 2023年第2期7-12,共6页
This paper presents a case study on the repair of a mechanical component of an overhead crane.The problem was initially identified through on-site inspection and analysis of the crane’s performance.The mechanical par... This paper presents a case study on the repair of a mechanical component of an overhead crane.The problem was initially identified through on-site inspection and analysis of the crane’s performance.The mechanical part was found damaged,leading to safety concerns and operational inefficiencies.The paper details the process of diagnosing the issue,developing a repair plan,and executing the repair work.The repair plan involved replacing the damaged component with a new one and conducting additional maintenance work to ensure optimal performance.The paper also discusses the outcomes of the repair work,which led to improved safety and increased efficiency of the overhead crane.The case study provides insights into the importance of regular maintenance and on-site inspections in ensuring the safe and efficient operation of mechanical systems. 展开更多
关键词 Mechanical component Overhead crane Operational inefficiencies
下载PDF
Effects of bolt profile and grout mixture on shearing behaviors of bolt-grout interface 被引量:5
15
作者 Chuanqing Zhang Guojian Cui +2 位作者 Xiangrong Chen Hui Zhou Liang Deng 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2020年第2期242-255,共14页
Shearing behavior and failure mechanism of bolt-grout interface are of great significance for load transfer capacity and design of rock bolting system.In this paper,direct shear tests on bolt-grout interfaces under co... Shearing behavior and failure mechanism of bolt-grout interface are of great significance for load transfer capacity and design of rock bolting system.In this paper,direct shear tests on bolt-grout interfaces under constant normal load(CNL) conditions were conducted to investigate the effects of bolt profile(i.e.rib spacing and rib height) and grout mixture on the bolt-grout interface in terms of mechanical behaviors and failure modes.Test results showed that the peak shear strength and the deformation capacity of the bolt-grout interface are highly dependent on the bolt profile and grout mixture,suggesting that bolt performances can be optimized,which were unfortunately ignored in the previous studies.A new interface failure mode,i.e.'sheared-crush' mode,was proposed,which was characterized by progressive crush failure of the grout asperities between steel ribs during shearing.It was shown that the interface failure mode mainly depends on the normal stress level and rib spacing,compared with the rib height and grout mixture for the range of tested parameters in this study. 展开更多
关键词 Bolt-grout INTERFACE Direct SHEAR test SHEAR behavior Failure mode BOLT profiles
下载PDF
Deformation and failure characteristics and fracture evolution of cryptocrystalline basalt 被引量:4
16
作者 Zhenjiang Liu Chuanqing Zhang +3 位作者 Chunsheng Zhang Yang Gao Hui Zhou Zhaorong Chang 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2019年第5期990-1003,共14页
Cryptocrystalline basalt is one of the two major types of rocks exposed in the super large-scale underground powerhouse in Baihetan hydropower station in China.The rock of this type shows various sitespecific mechanic... Cryptocrystalline basalt is one of the two major types of rocks exposed in the super large-scale underground powerhouse in Baihetan hydropower station in China.The rock of this type shows various sitespecific mechanical responses(e.g.fragmentation,fracturing,and relaxation)during excavation.Using conventional triaxial testing facility MTS 815.03,we obtained the stressestrain curves,macroscopic failure characteristics,and strength characteristics of cryptocrystalline basalt.On this basis,evolution of crack initiation and propagation was explored using the finite-discrete element method(FDEM)to understand the failure mechanism of cryptocrystalline basalt.The test results showed that:(1)under different confining stresses,almost all the pre-peak stressestrain curves of cryptocrystalline basalt were linear and the post-peak stresses decreased rapidly;(2)the cryptocrystalline basalt showed a failure mode in a form of fragmentation under low and medium confining stresses while fragmentation-shear coupling failure dominated at high confining stresses;and(3)the initial strength ratio(sci/sf,where sci and sf are the crack initiation strength and peak strength,respectively)ranged from 0.45 to 0.55 and the damage strength ratio(scd/sf,where scd is the crack damage strength)exceeded 0.9.The stressestrain curve characteristics and failure modes of cryptocrystalline basalt could be reflected numerically.For this,FDEM simulation was employed to reveal the characteristics of cryptocrystalline basalt,including high scd/sf values and rapid failure after scd,with respect to the microscopic characteristics of mineral structures.The results showed that the fragmentation characteristics of cryptocrystalline basalt were closely related to the development of tensile cracks in rock samples prior to failure.Moreover,the decrease in degree of fragmentation with increasing confining stress was also correlated with the dominant effect of confining stress on the tensile cracks. 展开更多
关键词 Baihetan HYDROPOWER STATION CRYPTOCRYSTALLINE BASALT Deformation and failure CHARACTERISTICS Characteristic strengths CRACK propagation evolution
下载PDF
Numerical Simulation on Flow Past Two Side-by-Side Inclined Circular Cylinders at Low Reynolds Number 被引量:2
17
作者 LIU Cai GAO Yang-yang +2 位作者 QU Xin-chen WANG Bin ZHANG Bao-feng 《China Ocean Engineering》 SCIE EI CSCD 2019年第3期344-355,共12页
A series of three-dimensional numerical simulations is carried out to investigate the effect of inclined angle on flow behavior behind two side-by-side inclined cylinders at low Reynolds number Re=100 and small spacin... A series of three-dimensional numerical simulations is carried out to investigate the effect of inclined angle on flow behavior behind two side-by-side inclined cylinders at low Reynolds number Re=100 and small spacing ratio T/D=1.5 (T is the center-to-center distance between two side-by-side cylinders, D is the diameter of cylinder). The instantaneous and time-averaged flow fields, force coefficients and Strouhal numbers are analyzed. Special attention is focused on the axial flow characteristics with variation of the inclined angle. The results show that the inclined angle has a significant effect on the gap flow behaviors behind two inclined cylinders. The vortex shedding behind two cylinders is suppressed with the increase of the inclined angle as well as the flip-flop gap flow. Moreover, the mean drag coefficient, root-mean-square lift coefficient and Strouhal numbers decrease monotonously with the increase of the inclined angle, which follows the independent principle at small inclined angles. 展开更多
关键词 TWO side-by-side inclined cylinders inclined angle WAKE FLOW pattern low REYNOLDS number AXIAL FLOW
下载PDF
Estimation of unloading relaxation depth of Baihetan Arch Dam foundation using long-short term memory network 被引量:1
18
作者 Ming-jie He Hao Li +3 位作者 Jian-rong Xu Huan-ling Wang Wei-ya Xu Shi-zhuang Chen 《Water Science and Engineering》 EI CAS CSCD 2021年第2期149-158,共10页
The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-shor... The unloading relaxation caused by excavation for construction of high arch dams is an important factor influencing the foundation’s integrity and strength.To evaluate the degree of unloading relaxation,the long-short term memory(LSTM)network was used to estimate the depth of unloading relaxation zones on the left bank foundation of the Baihetan Arch Dam.Principal component analysis indicates that rock charac-teristics,the structural plane,the protection layer,lithology,and time are the main factors.The LSTM network results demonstrate the unloading relaxation characteristics of the left bank,and the relationships with the factors were also analyzed.The structural plane has the most significant influence on the distribution of unloading relaxation zones.Compared with massive basalt,the columnar jointed basalt experiences a more significant unloading relaxation phenomenon with a clear time effect,with the average unloading relaxation period being 50 d.The protection layer can effectively reduce the unloading relaxation depth by approximately 20%. 展开更多
关键词 Columnar jointed basalt Unloading relaxation Long-short term memory(LSTM)network Principal component analysis Stability assessment Baihetan Arch Dam
下载PDF
Eff ects of oxytetracycline dihydrate and sulfamethoxazole on Microcystis aeruginosa and Chlamydomonas microsphaera 被引量:1
19
作者 Xudong ZHOU Xincheng JIANG +2 位作者 Shan GAO Zhenjia WAN Pengcheng GAO 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2021年第1期160-172,共13页
The increasing use of pharmaceuticals has become a major environmental issue in China.The presence of antibiotics in water may have deleterious eff ects on non-target aquatic organisms such as microalgae.In this study... The increasing use of pharmaceuticals has become a major environmental issue in China.The presence of antibiotics in water may have deleterious eff ects on non-target aquatic organisms such as microalgae.In this study,a cyanobacterium and an alga species in surface waters,Microcystis aeruginosa and Chlamydomonas microsphaera,were exposed to 0,0.1,0.5,1.0,2.0,5.0,10.0,and 20.0 mg/L of oxytetracycline dihydrate(OXY)and sulfamethoxazole(SMZ)for 96 h to determine the eff ects of these antibiotics on the growth and surface morphology.Moreover,the photosynthetic activity and the contents of superoxide dismutase(SOD),malondialdehyde(MDA),and protein were measured to examine the biochemical characteristics of M.aeruginosa and C.microsphaera under OXY and SMZ stress.The eff ects of both antibiotics on the growth of both species were concentration-dependent and characterized by low-dose stimulation and high-dose inhibition.C.microsphaera was more sensitive to both antibiotics than M.aeruginosa was.The algal cell membranes of both species disintegrated after exposure to a high concentration of OXY.All of the physiological parameters measured in this study were relatively stable at low concentrations of OXY and SMZ.After exposure to high concentrations of OXY and SMZ,photosynthetic activity decreased signifi cantly,whereas lipid peroxidation and the abundance of SOD,MDA,and protein increased signifi cantly.Thus,low-dose antibiotics may increase algal blooms in eutrophic waters. 展开更多
关键词 antibiotics CYANOBACTERIUM green algae physiology growth
下载PDF
Effects of amygdale heterogeneity and sample size on the mechanical properties of basalt 被引量:1
20
作者 Zhenjiang Liu Chunsheng Zhang +3 位作者 Chuanqing Zhang Huabin Wang Hui Zhou Bo Zhou 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2022年第1期93-107,共15页
Due to the complex diagenesis process,basalt usually contains defects in the form of amygdales formed by diagenetic bubbles,which affect its mechanical properties.In this study,a synthetic rock mass method(SRM)based o... Due to the complex diagenesis process,basalt usually contains defects in the form of amygdales formed by diagenetic bubbles,which affect its mechanical properties.In this study,a synthetic rock mass method(SRM)based on the combination of discrete fracture network(DFN)and finite-discrete element method(FDEM)is applied to characterizing the amygdaloidal basalt,and to systematically exploring the effects of the development characteristics of amygdales and sample sizes on the mechanical properties of basalt.The results show that with increasing amygdale content,the elastic modulus(E)increases linearly,while the uniaxial compressive strength(UCS)shows an exponential or logarithmic decay.When the orientation of amygdales is between 0°and 90°,basalt shows a relatively pronounced strength and stiffness anisotropy.Based on the analysis of the geometric and mechanical properties,the representative element volume(REV)size of amygdaloidal basalt blocks is determined to be 200 mm,and the mechanical properties obtained on this scale can be regarded as the properties of the equivalent continuum.The results of this research are of value to the understanding of the mechanical properties of amygdaloidal basalt,so as to guide the formulation of engineering design schemes more accurately. 展开更多
关键词 Amygdaloidal basalt Hard brittle rock Structural heterogeneity DFN-FDEM Mechanical properties Size-dependent effect
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部